Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Oxygen defects-engineered build Zn₂P₂O_{7-v} as anode materials

for Lithium-ion batteries

Qing-Rong Kong,^a Ning Zhang,^a Yanjun Cai^{a*}and Zhi Su^{a,b*}

(aCollege of Chemistry and Chemical Engineering, Xinjiang Key Laboratory of

Energy Storage and Photoelectroctalytic Materials, Xinjiang Normal University,

Urumqi, 830054, Xinjiang, China)

(^b Xinjiang University, Urumqi 830017, Xinjiang, P.R. China)

*Corresponding author: Yanjun Cai, Zhi Su

Tel: +86-991-4332683; cyjxjsf@yeah.net, suzhixj@163.com (Z. Su)

Physical measurements

The XRD patterns were tested using a Bruker D2 X-ray powder diffractometer equipped with a Cu K α radiation source (tube voltage = 30 kV, λ = 1.5418 Å). Highresolution transmission electron microscopy (HRTEM, ZEISS Libra 200 FE) was used to study the morphology of Zn₂P₂O_{7-y}. The Electron paramagnetic resonance (EPR) was using Bruker A 300 spectrometer, and the operating frequency was about 9.4 GHz. Thermogravimetric analysis (TGA) was measured using an SDT-Q600 thermal analyzer at a heating rate of 10 °C min⁻¹ in air. Energy Dispersive Spectrometer (EDS) was using EDAX ELECT PIUS (15 kV, 60 s).

Fig. S1. the XRD patterns of Zn₂P₂O_{7-y} synthesized with different calcined temperature and time.

Fig.S2 FTIR spectra of ZPO-1 and ZPO-4.

Fig.S3 EDX analysis of ZPO-1, ZPO-2, ZPO-3 and ZPO-4, respectively.

Fig. S4 (a) Cycle performance of $Zn_2P_2O_{7-y}$ synthesized at different calcination temperatures at 0.2 A g⁻¹ (b) Initial charge-discharge curves of $Zn_2P_2O_{7-y}$ synthesized at different calcination temperature.(c) Cycle performance of $Zn_2P_2O_{7-y}$ synthesized for 500 °C at different calcination times at 0.2 A g⁻¹ (d) Initial charge-discharge curves of $Zn_2P_2O_{7-y}$ synthesized for 500 °C at different calcination times.

Fig. S5 Cyclic voltammetry curves of ZPO-1 for 1-5 cycles.

Fig. S6 Samples of ZPO-1, ZPO-2, ZPO-3 and ZPO-4 (a) AC impedance and (b) equivalent circuit fitting curve.

Fig. S7 EIS of the ZPO-1 electrodes before the cycling test and after 500 cycles.

Table S1. The peaks appear in positions corresponding to the vibrations of the groups

of ZPO-1.

Absorption bands	Attribution
3400 cm ⁻¹	The stretching of O-H of water in air
1290 cm ⁻¹	The stretching vibrations of vs(O-P-O)
1100 cm ⁻¹	The stretching vibrations of vs(O-P-O)

945 cm ⁻¹	The asymmetric and symmetric stretches of PO ₃ terminal
	groups
763 cm ⁻¹	The stretching vibration of P-O-P bridges
624 cm ⁻¹	The fundamental frequency of the $[PO_4]^{3-}$ group
576 cm ⁻¹	The asymmetric P-O-P bridge

Table S2 The lattice parameter of $Zn_2P_2O_{7-y}$ by different calcination atmosphere.

lattice	ZPO-1	ZPO-2	ZPO-3	ZPO-4
parameter				
а	4.97	4.95	4.92	4.90
b	13.39	13.29	13.16	13.15
с	16.46	16.43	16.38	16.36
Vol	1089.30	1070.66	1064.90	1060.44

Note: ZPO-1(Argon-hydrogen mixture), ZPO-2(Argon), ZPO-3(Vacuo), ZPO-4(Air)

Compound	Element Percentage(C:O:P:Zn) %	
ZPO-1	3.13 : 24.91 : 20.40 : 51.56	
ZPO-2	3.21 : 28.56 : 15.62 : 52.61	
ZPO-3	1.24 : 24.35 : 11.48 : 62.29	
ZPO-4	0.42 : 23.71 : 13.85 : 62.02	

Table S3 The atomic ratio of C/O/P/Zn estimated from EDX data of ZPO-1.

Table S4 The rare values of $Zn_2P_2O_{7-y}$ by different calcination atmosphere (mAh g⁻¹)

Current	ZPO-1	ZPO-2	ZPO-3	ZPO-4
density				
$0.2 \ A \ g^{-1}$	1178.4	749.1	901.3	911.2
$0.5 \ { m A} \ { m g}^{-1}$	335.2	263.1	250.9	248.6

$1 {\rm A} {\rm g}^{-1}$	261.2	200.3	193.9	185.3
2 A g^{-1}	192.3	146.6	143.9	129.4
$5 {\rm ~A~g^{-1}}$	73.1	66.1	61.6	51.3
1 A g^{-1}	251.7	177.5	159.7	150.3
$0.5 \ A \ g^{-1}$	284.6	238.6	198.0	193.6
$0.2 \ A \ g^{-1}$	364.1	297.5	221.5	218.6
1 A g^{-1}	277.2	207.8	165.3	152.5

Table S5 Cycling capacity of $Zn_2P_2O_{7\text{-y}}$ by different calcination atmosphere at 1 A $g^{\text{-1}}.$

	ZPO-1	ZPO-2	ZPO-3	ZPO-4
Initial discharge	633.7	608.7	293.0	251.8
capacity				
Initial charge	209.7	179.2	87.8	82.3
capacity				
Discharge capacity	260.6	211.2	158.0	103.2 (600 cycles)
after 1200 cycles				
Charge capacity	260.4	211.0	157.7	103.0 (600 cycles)
after 1200 cycles				
Capacity retention	41.1%	34.7%	53.9%	40.9 %
rate				

Table S6 AC impedance of $Zn_2P_2O_{7-y}$ by different calcination atmosphere.

sample	$Rs(\Omega)$	$Rct(\Omega)$	$\delta w(cm^2s^{-0.5})$	$D_{Li}^{+}(cm^2 s^{-1})$
ZOP-1	2.13	157.5	65.4	8.53×10^{-14}
ZOP-2	8.45	270.5	162.9	1.26×10^{-14}
ZOP-3	16.7	364.5	197.6	9.28×10^{-15}
ZOP-4	10.12	1492.0	914.5	1.18×10^{-15}