Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Nitrogen Configuration Enriched N-doped Activated Carbon from Spent Tea Leaves Through Ammonia Impregnation Approach for CO₂ Adsorption

Amirul Hafiiz Ruhaimi ^a and Muhammad Arif Ab. Aziz^{*ab}

^a Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia.

^b Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia.

Fig. S1 The SEM image of a) CAC and the stem-part of b) NC and c) NA773C

Table S1The CHNS Elemental Composition of The Prepared Adsorbent UsingElemental Analyser (VarioMICRO CHNS, ELEMENTAR).

Adsorbent	Elemental Composition (wt%)							
	N		с		н		S	
	Composition	Average	Composition	Average	Composition	Average	Composition	Average
CAC	0.4167	0.4	58.5985	58.6	2.7283	2.8	2.3303	2.3
	0.3854		58.9048		2.8900		2.2658	
	0.3846		58.2323		2.8500		2.1685	
AC	2.2824	2.2	57.4274	57.3	2.9105	2.9	2.1092	2.1
	2.2193		57.4846		2.9655		2.1182	
	2.1851		56.9077		2.9539		2.0288	
NC	5.7384	5.7	68.1188	68.3	3.3569	3.3	2.0193	2.0
	5.6981		68.1813		3.3203		2.0097	
	5.5548		68.4532		3.3217		2.0224	
NA773C	3.7231	3.7	57.7098	58.8	2.3095	2.4	2.0061	2.0
	3.7484		60.0293		2.3295		1.9891	
	3.6771		58.5131		2.4262		2.0349	

Fig. S2 The RAMAN spectra of; a) CAC, b) NC and c) NA773C at three (3) different scanning point.

Fig. S3 The full-scale XPS Spectrum of CAC and AC recorded on a Kratos Axis Ultra spectrometer.

Fig. S4 The full-scale XPS Spectrum of NC and NA773C recorded on a Kratos Axis Ultra spectrometer.