Supplementary Information

Optimization of the Synergistic Effects in Polycrystalline Pt-Au Electrodes in Developing an Effective Arsenic Sensor via Oxidation Reactions

Mohammad Imran Hossain ^a, Surove Rani Saha ^a, Kentaro Aoki ^b, Md. Mahfujul Alam ^a, Nayan Ranjan Singha ^c, Mostafizur Rahaman ^d, Ali Aldalbahi ^d, Yuki Nagao ^b, Mohammad A. Hasnat ^{a, e, *}

- ^a Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
- ^b School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- ^c Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Kolkata-700106, West Bengal, India
- ^d Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- ^e International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
- *Corresponding Author: Mohammad A. Hasnat (Email: <u>mah-che@sust.edu</u>)

Text S1. Stability test

To assess the stability performance of the $(Pt-Au)_8$ electrode, accelerated CV cycling at a scan rate of 100 mVs⁻¹ was carried out for 500 consecutive cycles in a 10 mL 2 mM As(III) solution.

Figure S1. CVs of As(III) oxidation reaction obtained using (Pt-Au)₈ electrode for 2 mM As(III) solution diluted in 0.1 M H_2SO_4 solution during the 1st and 500th potential scanning.

Text S2. Real sample analysis

To prepare real samples for evaluating the electrode's performance, 5 mL of groundwater collected from four different districts in Bangladesh was mixed with 5 mL of 0.1 M H_2SO_4 solution, followed by the addition of 100 µL of 0.1 M As(III) solution, resulting in a final concentration of 1 mM As(III). To assess potential interference from the real matrix, a standard solution was prepared by replacing the groundwater with an equal volume of deionized (DI) water. Linear sweep voltammograms (LSVs) corresponding to the 1 mM As(III) solutions prepared with groundwater of four different districts along with one standard solution are provided below.

Figure S2. Linear sweep voltammograms (LSVs) obtained for real groundwater samples collected from different districts in Bangladesh recorded using (Pt-Au)₈ electrode at a scan rate of 0.1 Vs^{-1} for 1 mM As(III) solutions.