Refining Mn-Ni Synergy for the Design of Efficient Catalysts in

Electrochemical Ethanol Oxidation

Qitong Zhong,^a Xing Tan,^a Ruixing Du,^a Longfei Liao,^b Zhenchen Tang,^a Shiming Chen,^c Dafeng Yan,^d Feng Zeng^{a,*}

^a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China

^b School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China

^c School of Intelligent Medicine, China Medical University, Shenyang 110122, Liaoning, China

^d College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China

* Corresponding author: zeng@njtech.edu.cn

Figure S1. Electrochemical deposition current density over various Mn/NF electrodes.

Figure S2. Comparison of Nyquist plots before and after stability test over Mn/NF-0 (a), Mn/NF-1.6 (b), Mn/NF-3.6 (c), Mn/NF-6.1 (d), and Mn/NF-8.6 (e) electrodes. In an electrolyte with 1M KOH and 1 M ethanol, at 50 mV s⁻¹.

Figure S3. Comparison of Tafel plots before and after stability test over Mn/NF-0 (a), Mn/NF-1.6 (b), Mn/NF-3.6 (c), Mn/NF-6.1 (d), and Mn/NF-8.6 (e) electrodes. In an electrolyte with 1M KOH and 1 M ethanol, at 10 mV s⁻¹. The potentials are IR compensated.

Figure S4. Double-layer capacitance measurements for determining ECSA for various Mn/NF electrodes in 1mol L^{-1} KOH with 1mol L^{-1} EtOH.

Figure S5. Electrochemical deposition current density over Mn/NF-6.1 and Mn/carbonpaper. As the deposition current density over carbon paper is much lower, a longerdepositiontimewasapplied.

Figure S6. CV curves for ethanol oxidation over Mn/NF-6.1 and Mn/carbon paper. In an electrolyte with 1M KOH and 1 M ethanol, at 50 mV s⁻¹. The potentials are IR compensated.

Figure S7. ECSA-based CV curves obtained at the Mn/Ni electrode after stability testing.

	$\mathrm{BE^{a}}\ \mathrm{for}\ \mathrm{Mn^{3+}}$	BE for Mn ⁴⁺	Mn^{3+}/Mn^{4+}	M-OH/M-O ratio
	(eV)	(eV)	ratio	
NF/Mn-1.6	642.27	644.71	1.97	0.66
NF/Mn-3.6	642.33	644.75	1.85	0.81
NF/Mn-6.1	642.31	644.64	1.77	1.18
NF/Mn-8.6	642.33	644.65	1.72	1.30

Table S1. Binding energies for Mn^{3+} and Mn^{4+} , as well as the Mn^{3+}/Mn^{4+} and $(O_{ad}+O-H_{ad})/O_L$ ratio.

^a Binding energy.