Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Improving thermal- and photo-stability of CsPbBr₃ perovskite films by adding graphene oxide for low threshold amplified spontaneous emission

Ayesha Azeem¹, Xinyang Wang¹, Guochao Lu¹, Meiyi Zhu¹, Xingliang Dai¹, Jing Li^{1,2*}, Zhizhen Ye¹, Jun Pan², Haiping He^{1*}

- 1. School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China

E-mail: lijing23@zjut.edu.cn, hphe@zju.edu.cn

Fig S1. The FWHM and ASE intensity versus excitation fluence of the pure perovskite and different concentrations (0.03-0.18mg/ml GO) of CsPbBr₃: GO thin films without annealing (a-g).

Fig S2. The FWHM and ASE intensity versus excitation fluence of the pure perovskite and different concentrations (0.03-0.18mg/ml GO) of CsPbBr₃: GO thin film after annealing at 130 °C for 24 hours under nitrogen atmosphere(a-g)

Fig S3. Change in crystal sizes of CsPbBr₃: GO thin films at 0.03mg/ml, 0.06mg/ml, 0.09mg/ml, 0.12mg/ml,0.15mg/ml, and 0.18mg/ml GO, respectively.

Fig S4. XRD patterns of the parent spectra of the pure CsPbBr₃ thin film and various concentrations of CsPbBr₃: GO polycrystalline thin films (0.03mg/ml GO-0.18mg/ml) deposited on a glass substrate after annealing at 130 °C for 24 hours.

Fig S5. FTIR spectra of PSK: GO 0.18mg/ml solution after filtration.

Fig S6. (a)SEM image a side-view and (b) Sulfur EDX elemental mapping of PSK: GO 0.18mg/ml layer intermingled with NH, CH, CH, SH-modified GO nanoparticles.

Film Type	FWHM	FWHM	Threshold	Threshold
	before Ann.	after Ann.	before Ann.	after Ann.
CsPbBr ₃	10.0 nm	11.0 nm	33.9	41.7
CsPbBr₃+0.03mg/mlGO	9.7 nm	9.29 nm	20.1	31.8
CsPbBr ₃ +0.06mg/mlGO	9.0 nm	8.02 nm	19.0	38.1
CsPbBr ₃ +0.09mg/mlGO	8.5 nm	8.60 nm	19.1	31.9
CsPbBr₃+0.12mg/mlGO	7.5 nm	9.21 nm	15	32.1
CsPbBr₃+0.15mg/mlGO	7.4nm	6.69 nm	14.2	30.4
CsPbBr ₃ +0.18mg/mlGO	6.5 nm	6.02 nm	17.2	25.2

Table S1. Comparison of FWHM and threshold values of different types of films before and after annealing at 130 °C for 24 hours.