Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Investigating the reactivity and cellular interactions of indazole-based ruthenium(II) complexes in cancer and leishmania cells

Danilo Kleber Santos Sales, *^a Gabriela Cruz Fernandes, ^b Carlos Daniel Silva da Silva, ^b Isabela Santos Cezar, ^c Dahara Keyse Carvalho Silva, ^d Milena Botelho Pereira Soares, ^{d,e} Cássio Santana Meira^{c,d,e}, Eduardo Henrique Silva de Sousa^f; Luiz Gonzaga de França Lopes^f and Denise Santos de Sá ^c

^a Department of Engineering, Jorge Amado University Center, Salvador, Bahia, Brazil.

^b Department of Chemistry, Federal Institute of Bahia, Salvador, Bahia, Brazil.

^c Department of Life Sciences, State University of Bahia, Salvador, Bahia, Brazil.

^d Gonçalo Moniz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Salvador, Bahia, Brazil.

^e Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil.

^f Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.

Fig. S1 ¹H NMR bidimensional spectrum (COSY) of FOR022 and 25 °C, deuterated methanol.

Fig. S2 Electronic absorption spectra of metal complex *cis*-[RuCl₂(phen)₂] (FOR020 - precursor) in acetonitrile.

Fig. S3 Electronic absorption spectra of metal complex cis-[RuCl(Hind)(phen)₂]PF₆ (FOR022) in acetonitrile.

Fig. S4 Electronic absorption spectra of metal complex cis-[Ru(Hind)₂(phen)₂](PF₆)₂ (FOR0E2), in acetonitrile.

Fig. S5 infrared spectra of metal complex cis-[RuCl₂(phen)₂] (FOR020 - precursor) in KBr pellet.

Fig. S6 infrared spectra of metal complex cis- $[RuCl(Hind)(phen)_2]PF_6$ (FOR022) in KBr pellet.

Fig. S7 infrared spectra of metal complex *cis*-[Ru(Hind)₂(phen)₂](PF₆)₂ (FOR0E2) in KBr pellet.

Fig. S8 Cyclic voltammogram of metal complex *cis*-[RuCl(Hind)(phen)₂]PF₆ (FOR022) (940 μ mol L⁻¹) at 25 mV s⁻¹ in acetonitrile containing 0.1 mol L⁻¹ tetrabutylammonium perchlorate (PTBA). Ferrocene as internal standard, Fc/Fc⁺ at E_{1/2} = 0.52 V vs. Ag/AgCl - Supplementary data Fig. S10.

Fig. S9 Cyclic voltammogram metal complex *cis*-[Ru(Hind)₂(phen)₂](PF₆)₂ (FOR0E2) (940 μ mol L⁻¹) at 25 mV s⁻¹ in acetonitrile containing 0.1 mol L⁻¹ tetrabutylammonium perchlorate (PTBA). Ferrocene as internal standard, Fc/Fc⁺ at E_{1/2} = 0.52 V vs. Ag/AgCl - Supplementary data Fig. S10.

Fig. S10 Cyclic voltammogram of internal standard ferrocene (Fc) in acetonitrile/tetrabutylammonium perchlorate (PTBA). Rate scan: 25 mV s⁻¹.

 Table S1 Electrochemical potentials of metal complexes cis-[RuCl₂(phen)₂] (FOR020 - precursor), cis-[RuCl(Hind)(phen)₂]PF₆

 (FOR022) and cis-[Ru(Hind)₂(phen)₂](PF₆)₂ (FOR0E2) in MeCN/PTBA (vs Ag/AgCl).

Compounds	Electrochemical potential (E _{1/2}) (V) 1a/1c	Experimental λ _{max} (nm) in visible range

FOR020	0.47	542
FOR022	0.89	462
FOR0E2	0.87	450