Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024 ## Supplementary materials ## Thermo- and pH-tolerance xylanase immobilized magnetic responsive Zr-MOFs composites as recyclable biocatalyst for the degradation of corn straw Qingtai Chen¹, Chongchong Wu²*, Shujie Hu³, Lizhi Cui⁴, Yong Zhang⁵, Peng Hu¹, Pei Yu¹, Zhi Xu¹, Miao Yu¹* - 1. School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; - 2. CNOOC Institute of Chemicals & Advanced Materials, Beijing 102200, China; - 3. School of Physical Education, Huanghuai University, Zhumadian 463000, China; - 4. China Meheco Topfond Pharmaceutical Co. Ltd, Zhumadian 463000, China; - 5. Inspection and Testing Center, Zhumadian Bureau of Quality and Technical Supervision, Zhumadian 463000, China. ^{*} Corresponding Authors' E-mail: chongchong.wu@ucalgary.ca; miaoy050666@126.com; ## **Experiment section** ## magnetic Zr-MOFs particles characterization **Fig. S1** Morphology and structural characterization of magnetic Zr-MOFs particles and their precursor. SEM images (A and C) and TEM images (B and D) of Fe_3O_4 and magnetic Zr-MOFs particles, respectively; XRD patterns (E) and FTIR spectra (F) of magnetic Zr-MOFs particles and their precursor, respectively.