Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Synthesis of Chiral α-Amides *via* Synergistic

Visible-light-induced Wolff Rearrangement and Asymmetric

NHC Catalysis

Jiaomei Wang,^a Yangxu Chen,^b Siyan Miao,^b Changsheng Yao^{*,b} and Kai Zhang^{*,b}

^a School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China

^b Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science,

Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China

E-mail: zhangkai@jsnu.edu.cn.

Table of Contents

1.	General Information	S2
2.	Preliminary results	S3
3.	Optimizations of Reaction Conditions	S4
4.	General procedures for the synthesis of products	S5
5.	Copies of NMR Spectra	.834

1. General Methods and Materials

Unless otherwise mentioned, all reactions were carried out under an atmosphere of argon in dry glassware and were monitored by analytical thin-layer chromatography (TLC), which was visualized by ultraviolet light (254 nm). All solvents were obtained from commercial sources and were purified according to standard procedures. All syntheses and manipulations were carried out under a dry argon atmosphere. Purification of the products was accomplished by flash chromatography using silica gel (200-300 mesh). Melting points were determined by electric heating digital melting point meter and were uncorrected. Optical rotation was measured by the Perkin Elmer 341 polarimeter. ¹H NMR spectra were measured on a 400 MHz spectrometer in CDCl₃ (101 MHz, ¹³C NMR) or DMSO- d_6 with chemical shift (δ) given in ppm relative to TMS as internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiple), coupling constants (Hz), integration. High-resolution mass spectra (HRMS) were measured with ESI in a positive mode. The ee value determination was carried out using chiral HPLC with Chiralpak AD-H and IC column on Agilent 1100 with a UV-detector.

All starting materials commercially available were used directly. Substrates α -diazoketones 2 were prepared according to literatures^{1, 2}.

2. Preliminary results

R + NH ₂ + 1 0.1 mmol	N ₂ NHC (10 mol% ¹ BuOK (10 mol% ¹ BuOK (10 mol% CHCl ₃ (2 mL) r.t., 8 h Blue LEDs 0.2 mmol	$ \stackrel{(b)}{}_{0} R + \stackrel{(b)}{}_{0} Ph $	N N N HC
Entry	1	Yield $(\%)^b$	ee (%) ^c
1	NH ₂	69	29
2	Br NH ₂	77	41
3	O ₂ N NH ₂	74	77

^{*a*}Unless noted, reactions were performed with **1** (0.10 mmol), **2a** (0.2 mmol), **NHC** (10 mol%) and base (10 mol%) in anhydrous solvent (2 mL) at r.t. under the irridation of 2 W blue LEDs. ^{*b*}Isolated yields. ^{*c*}Determined by chiral HPLC analysis.

3. Optimizations of Reaction Conditions

^{*a*}Unless noted, reactions were performed with **1a** (0.10 mmol), **2a** (0.2 mmol), **NHC** (10 mol%) and base (10 mol%) in anhydrous solvent (2 mL) at r.t. under the irridation of 2 W blue LEDs. ^{*b*}Isolated yields. ^cDetermined by chiral HPLC analysis. ^{*d*}Using **NHC1** (20mol%) and ^{*t*}BuOK (20 mol%) instead. ^{*c*}Reaction performed under 0 °C for 18 h.

4. General procedures for the synthesis of products

General procedure for the synthesis of product 3: A dried and argon-filled Schlenk tube was charged with anilines 1 (0.10 mmol), α -diazoketones 2 (0.20 mmol, 2.0 equiv.), NHC2 (0.02 mmol, 20 mol%), and ^{*t*}BuOK (0.02 mmol, 20 mol%) in dry CHCl₃ (2 mL). The reaction mixture was stirred under the irradiation of 2W blue LEDs at 0 °C until the consumption of anilines 1 as monitored by TLC. The solvent was removed in vacuo and the residue was purified by chromatography on silica gel using PE/EA (20:1) as eluent to afford the desired products 3.

General procedure for the synthesis of product 4: In an oven-dried Schlenk tube equipped with a magnetic stirring bar, 3ca (30.3 mg, 0.1 mmol, 1 equiv.) was dissolved in THF (2.0 mL) under a argon atmosphere. The solution was cooled to 0 $^{\circ}$ C and LiAlH₄ (6 mg, 0.16 mmol, 1.6 equiv.) was added. The mixture was heated at 100 $^{\circ}$ C for 12 h. The reaction was diluted with THF (5 mL) and quenched with 15% NaOH (aq., 0.5 mL). The aqueous phase was extracted with EtOAc (3 x 10 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA = 20:1) to afford 4 (27 mg, 93% yield) as a colorless oil.

General procedure for the synthesis of product 5:³ In an 10 mL Schlenk tube equipped with a magnetic stirring bar, H_2O_2 (30% in water, 0.15 mL) was added to a 0 °C solution of the 3 (28 mg, 0.1 mmol, 1.0 equiv.) in THF (1.0 mL) and H_2O (0.33 mL). LiOH•H₂O (12.6 mg, 0.3 mmol) was added, and the reaction mixture was stirred at 0 °C for 1.5 hours. Na₂S₂O₃ (0.7 M, 0.6 mL) and NaHCO₃ (0.5 N, 1.2 mL) were added, and the mixture was stirred at room temperature for 15 min.

The THF was removed in vacuo, and the resulting aqueous layer was washed with CH_2Cl_2 (3 mL), acidified with 10% HCl (aq.), and extracted with EtOAc (2 x 5 mL). The residue was purified by flash chromatography (PE/EA = 2:1) to afford **5** (16.5 mg, 80% yield) as a colorless solid.

3. Characterization Data of Products

(R)-N-(2-cyano-4-nitrophenyl)-2-phenylpropanamide (3aa)

 $\begin{array}{l} \begin{array}{l} 20.7 \text{ mg}, 75\% \text{ yield, pale yellow solid; M.p. } 103.4\text{-}104.0 \ ^\circ\text{C}; \ \left[\alpha\right]_D^{20} = -\\ 0.091 \ (\text{c} = 0.1 \text{ in CH}_3\text{OH}); \ ^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \ \delta \ 8.75 \ (\text{d}, J = 8.9 \\ \text{Hz}, 1\text{H}), 8.48 - 8.29 \ (\text{m}, 2\text{H}), 7.92 \ (\text{s}, 1\text{H}), 7.51 - 7.34 \ (\text{m}, 5\text{H}), 3.87 \ (\text{q}, J = 7.2 \text{ Hz}, 1\text{H}), 1.67 \ (\text{d}, J = 7.1 \text{ Hz}, 3\text{H}); \ ^{13}\text{C NMR} \ (101 \text{ MHz, CDCl}_3) \ \delta \ 172.9, 145.3, 142.5, 138.9, \\ 129.8, 129.3, 128.5, 127.8, 127.7, 120.1, 113.9, 101.6, 48.6, 17.7; \ \text{HRMS} \ (\text{ESI}) \ \text{m/z} \ \text{calcd for} \\ \text{[M+H]}^+ \ C_{16}\text{H}_{14}\text{N}_3\text{O}_3: \ 296.1030; \ \text{found:} \ 296.1029; \ \text{HPLC} \ (\text{Daicel Chiralpak IC column,} \\ n-\text{hexane}/i-\text{PrOH} = 90/10, \ \text{flow rate} = 1.0 \ \text{mL/min}, 254 \ \text{nm}, 25 \ ^\circ\text{C}, \ \text{retention time:} \ t_{\text{minor}} = 27.247 \\ \text{min, } t_{\text{major}} = 33.877 \ \text{min}, 97:3 \ \text{e.r.}). \end{array}$

(*R*)-2-(4-bromophenyl)-*N*-(2-cyano-4-nitrophenyl)propanamide (3ab)

26.9 mg, 72% yield, pale yellow solid; M.p. 154.5-155.4 °C; $[\alpha]_D^{20} = -0.018$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.76 - 8.69 (m, 1H), 8.48 - 8.34 (m, 2H), 7.89 (s, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.29 (s, 2H), 3.82 (q, J = 7.1 Hz, 1H), 1.64 (d, J = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 145.2, 142.7, 138.0, 132.8, 129.4, 129.3, 127.8, 122.4, 120.3, 114.0, 101.7, 48.0, 17.9;; HRMS (ESI) m/z calcd for [M + H]⁺C₁₆H₁₃BrN₃O₃: 374.0135; found: 374.0139; HPLC (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: t_{major} = 20.630 min, t_{minor} = 16.967 min, 93:7 e.r.).

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	17.173	27.494	54.514	49.99
2	21.120	27.505	44.839	50.01

Integration Results					
Peak Name	Retention Time	Area	Height	Relative Area	
	min	mAU*min	mAU	%	
1	16.967	7.278	14.222	7.00	
2	20.630	96.766	157.471	93.00	

(R)-2-(4-chlorophenyl)-N-(2-cyano-4-nitrophenyl)propanamide (3ac)

23.4 mg, 71% yield, pale yellow solid; M.p. 123.8 – 124.5 °C; $[\alpha]_D^{20}$ = -0.012 (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.79 – 8.66 (m, 1H), 8.46 – 8.36 (m, 2H), 7.89 (s, 1H), 7.45 – 7.30 (m, 4H), 3.84 (q, J = 7.1 Hz, 1H), 1.64 (d, J = 7.3 Hz, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 172.3, 145.2, 142.7, 137.4, 134.4, 129.8, 129.4, 128.9, 127.8, 120.3, 114.0, 101.7, 47.9, 18.0; **HRMS** (ESI) m/z calcd for [M + H]⁺ C₁₆H₁₃ClN₃O₃: 330.0640; found: 330.0646; **HPLC** (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: t_{major} = 19.103 min, t_{minor} = 15.967 min, 91:9 e.r.).

Integration Results					
Peak Name	Retention Time	Area	Height	Relative Area	
	min	mAU*min	mAU	%	
1	16.197	32.488	68.261	50.08	
2	19.510	32.390	57.671	49.92	

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	15.967	3.936	7.987	9.08
2	19.103	39.419	70.820	90.92

(R)-N-(2-cyano-4-nitrophenyl)-2-(4-fluorophenyl)propanamide (3ad)

21.6 mg, 69% yield, pale yellow solid; M.p. $126.2 - 126.8 \,^{\circ}\text{C}$; $[\alpha]_D^{20} = -0.013 \,(\text{c} = 0.1 \,\text{in CH}_3\text{OH})$; ¹H NMR (400 MHz, CDCl₃) $\delta 8.78 - 8.69 \,(\text{m}, 1\text{H})$, 8.46 - 8.36 (m, 2H), 7.91 (s, 1H), 7.42 - 7.33 (m, 2H), 7.18 - 7.08 (m, 2H), 3.86 (q, $J = 7.1 \,\text{Hz}$, 1H), 1.65 (d, $J = 4.5 \,\text{Hz}$, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 162.3 (d, $J_{\text{C-F}} = 249.2 \,\text{Hz}$), 145.2, 142.6, 134.7 (d, $J_{\text{C-F}} = 3.4 \,\text{Hz}$), 129.4, 129.3 (d, $J_{\text{C-F}} = 8.1 \,\text{Hz}$), 127.8, 120.2, 116.7 (d, $J_{\text{C-F}} = 21.8 \,\text{Hz}$), 114.0, 101.7, 47.8, 18.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.2; HRMS (ESI) m/z calcd for [M + H]⁺ C₁₆H₁₃FN₃O₃: 314.0935; found: 314.0942; HPLC (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: t_{major} = 17.880 min, t_{minor} = 15.467 min, 92:8 e.r.).

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	15.863	56.522	125.029	50.02
2	18.377	56.474	109.283	49.98

integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	15.467	10.210	24.073	7.92
2	17.880	118.752	229.836	92.08

(R)-N-(2-cyano-4-nitrophenyl)-2-(4-(trifluoromethyl)phenyl)propanamide (3ae)

25.4 mg, 70% yield, pale yellow solid; M.p. $167.9 - 168.3 \,^{\circ}C; [\alpha]_D^{20}$ = -0.010 (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.78 -8.69 (m, 1H), 8.49 - 8.36 (m, 2H), 7.88 (s, 1H), 7.75 - 7.65 (m, 2H), 7.57 - 7.49 (m, 2H), 3.92 (q, *J* = 7.1 Hz, 1H), 1.68 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 145.0, 143.0, 142.8, 130.7 (q, *J*_{C-F} = 30 Hz), 129.4, 128.0, 127.8, 126.6 (q, *J*_{C-F} = 3.8 Hz), 123.9 (q, *J*_{C-F} = 270 Hz), 120.4, 114.0, 101.8, 48.4, 18.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7; HRMS (ESI) m/z calcd for [M + H]⁺C₁₇H₁₃F₃N₃O₃: 364.0904; found: 364.0903; HPLC (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: t_{major} = 11.100 min, t_{minor} = 9.643 min, 89.5:10.5 e.r.).

Integration Results					
Peak Name	Retention Time	Area	Height	Relative Area	
	min	mAU*min	mAU	%	
1	9.643	3.426	10.387	10.48	
2	11.100	29.266	82.555	89.52	

(R)-N-(2-cyano-4-nitrophenyl)-2-(p-tolyl)propanamide (3af)

22.2 mg, 72% yield, pale yellow solid; M.p. 118.5 – 119.3 °C; $[\alpha]_D^{20} = -$ 0.031 (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.81 – 8.68 (m, 1H), 8.44 – 8.33 (m, 2H), 7.95 (s, 1H), 7.30 – 7.23 (m, 4H), 3.83 (q, J = 7.2 Hz, 1H), 2.37 (s, 3H), 1.64 (d, J = 7.2 Hz, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 173.1, 145.4, 142.4, 138.3, 135.8, 130.4, 129.3, 127.8, 127.5, 120.0, 113.9, 101.5, 48.1, 21.1, 17.7; **HRMS** (ESI) m/z calcd for [M + H]⁺C₁₇H₁₆N₃O₃: 310.1186; found: 310.1182; **HPLC** (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: t_{major} = 23.633 min, t_{minor} = 17.970 min, 93:7 e.r.).

Integration Results					
Peak Name	Retention Time	Area	Height	Relative Area	
	min	mAU*min	mAU	%	
1	18.113	123.372	252.792	50.15	
2	23.933	122.653	184.715	49.85	

Integration Results					
Peak Name	Retention Time	Area	Height	Relative Area	
	min	mAU*min	mAU	%	
1	17.970	16.840	37.232	6.60	
2	23.633	238.275	344.653	93.40	

(R)-2-(3-bromophenyl)-N-(2-cyano-4-nitrophenyl)propanamide (3ag)

25.4 mg, 68% yield, pale yellow solid; M.p. 109.1 – 109.7 °C; $[\alpha]_D^{20} = -0.034$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.78 – 8.69 (m, 1H), 8.47 – 8.38 (m, 2H), 7.89 (s, 1H), 7.58 – 7.46 (m, 2H), 7.36 – 7.31 (m, 2H), 3.82 (q, J = 7.1 Hz, 1H), 1.65 (d, J = 7.1 Hz, 3H); ¹³C NMR

(101 MHz, CDCl₃) δ 172.0, 145.1, 142.7, 141.2, 131.6, 131.2, 130.7, 129.4, 127.8, 126.3, 123.7, 120.3, 114.0, 101.8, 48.2, 17.9; **HRMS** (ESI) m/z calcd for $[M + H]^+ C_{16}H_{13}BrN_3O_3$: 374.0135; found: 374.0134; **HPLC** (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: $t_{major} = 19.770 \text{ min}$, $t_{minor} = 16.440 \text{ min}$, 92:8 e.r.).

Integration Results					
Peak Name	Retention Time	Area	Height	Relative Area	
	min	mAU*min	mAU	%	
1	16.327	9.353	19.801	50.00	
2	19.697	9.354	16.702	50.00	

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	16.440	2.851	6.179	7.87
2	19.770	33.373	58.554	92.13

(R)-2-(3-chlorophenyl)-N-(2-cyano-4-nitrophenyl)propanamide (3ah)

21.1 mg, 64% yield, pale yellow solid; M.p. 115.2 – 115.9 °C; $[\alpha]_D^{20} = -0.037$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.80 – 8.66 (m, 1H), 8.51 – 8.33 (m, 2H), 7.94 (s, 1H), 7.43 – 7.27 (m, 4H), 3.85 (q, *J* = 7.1 Hz, 1H), 1.65 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

172.1, 145.1, 142.7, 140.9, 135.5, 130.9, 129.4, 128.6, 127.9, 127.8, 125.9, 120.4, 114.0, 101.8, 48.1, 17.9; **HRMS** (ESI) m/z calcd for $[M + H]^+ C_{16}H_{13}ClN_3O_3$: 330.0640; found: 330.0638; **HPLC** (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: $t_{major} = 19.200 \text{ min}$, $t_{minor} = 15.427 \text{ min}$, 86:14 e.r.).

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	15.497	22.900	50.443	49.87
2	19.370	23.024	41.068	50.13

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	15.427	12.410	29.447	13.87
2	19.200	77.096	139.039	86.13

(R)-N-(2-cyano-4-nitrophenyl)-2-(3-fluorophenyl)propanamide (3ai)

21.9 mg, 70% yield, pale yellow solid; M.p. 110.7 – 111.3 °C; $[\alpha]_D^{20} = -0.031$ (c = 0.1 in CH₃OH); ¹**H NMR** (400 MHz, CDCl₃) δ 8.80 – 8.69 (m, 1H), 8.48 – 8.34 (m, 2H), 7.91 (s, 1H), 7.48 – 7.38 (m, 1H), 7.22 – 7.16 (m, 1H), 7.15 – 7.02 (m, 2H), 3.87 (q, *J* = 7.1 Hz, 1H), 1.66 (d, *J* = 7.1 Hz, 1Hz, 1Hz), 1.66 (d, *J* = 7.1 Hz), 1.66 (d, J = 7.1 Hz), 1.66 (d,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 163.4 (d, $J_{C-F} = 249.7$ Hz), 145.2, 142.7, 141.3 (d, $J_{C-F} = 7.0$ Hz), 131.4 (d, $J_{C-F} = 8.4$ Hz), 128.6 (d, $J_{C-F} = 160.3$ Hz), 123.5, 123.4, 120.2, 115.5 (d, $J_{C-F} = 21.2$ Hz), 114.7 (d, $J_{C-F} = 21.9$ Hz), 113.9, 101.7, 48.2, 17.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.7; HRMS (ESI) m/z calcd for [M + H]⁺C₁₆H₁₃FN₃O₃: 314.0935; found: 314.0933; HPLC (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: t_{major} = 23.783 min, t_{minor} = 16.313 min, 95:5 e.r.).

Integration Results						
Peak Name	Retention Time	Area	Height	Relative Area		
	min	mAU*min	mAU	%		
1	16.233	13.072	27.940	49.71		
2	23.773	13.222	19.645	50.29		

Integration Results

U				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	16.313	2.920	5.905	5.10
2	23.783	54.354	80.578	94.90

(R)-N-(2-cyano-4-nitrophenyl)-2-(m-tolyl)propanamide (3aj)

21.3 mg, 69% yield, pale yellow solid; M.p. 105.6 – 106.2 °C; $[\alpha]_D^{20} = -$ 0.042 (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.81 – 8.69 (m, 1H), 8.45 – 8.33 (m, 2H), 7.98 (s, 1H), 7.37 – 7.29 (m, 1H), 7.23 – 7.12 (m, 3H), 3.83 (q, *J* = 7.2 Hz, 1H), 2.39 (s, 3H), 1.65 (d, *J* = 7.2 Hz, 3H);

¹³**C NMR** (101 MHz, CDCl₃) δ 173.0, 145.4, 142.4, 139.7, 138.8, 129.6, 129.3, 129.2, 128.3, 127.8, 124.7, 120.0, 113.9, 101.6, 48.4, 21.4, 17.5; **HRMS** (ESI) m/z calcd for [M + H]⁺ C₁₇H₁₆N₃O₃: 310.1186; found: 310.1181; **HPLC** (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: t_{major} = 18.310 min, t_{minor} = 16.643 min, 86:14 e.r.).

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	16.603	82.610	183.800	50.53
2	18.303	80.877	163.373	49.47

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	16.643	32.831	71.757	14.17
2	18.310	198.885	394.335	85.83

(R)-N-(2-cyano-4-nitrophenyl)-2-(3-methoxyphenyl)propanamide (3ak)

24.1 mg, 74% yield, pale yellow solid; M.p. 101.4 – 101.9 °C; $[\alpha]_D^{20} = -0.021$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.79 – 8.68 (m, 1H), 8.44 – 8.33 (m, 2H), 7.98 (s, 1H), 7.43 – 7.32 (m, 1H), 7.03 – 6.85 (m, 3H), 3.89 – 3.78 (m, 4H), 1.66 (d, J = 7.4 Hz, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 172.7, 160.6, 145.3, 142.5, 140.3, 130.9, 129.3, 127.8, 120.1, 119.9, 113.9, 113.7, 113.5, 101.6, 55.3, 48.5, 17.5; **HRMS** (ESI) m/z calcd for [M + H]⁺C₁₇H₁₆N₃O₄: 326.1135; found: 326.1136; **HPLC** (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 75/25, flow rate = 1.8 mL/min, 254 nm, 25 °C, retention time: t_{major} = 22.030 min, t_{minor} = 11.463 min, 93:7 e.r.).

8.106

104.276

21.993

137.328

7.21

92.79

11.463

22.030

(R)-2-(2-chlorophenyl)-N-(2-cyano-4-nitrophenyl)propanamide (3al)

20.7 mg, 63% yield, pale yellow solid; M.p. 177.7 – 178.3 °C; $[\alpha]_D^{20} = -$ 0.020 (c = 0.1 in CH₃OH); ¹**H NMR** (400 MHz, CDCl₃) δ 8.81 – 8.68 (m, 1H), 8.47 - 8.33 (m, 2H), 8.03 (s, 1H), 7.53 - 7.43 (m, 2H), 7.41 - 7.28 (m, 2H), 4.40 (q, J = 7.0 Hz, 1H), 1.67 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 145.4, 142.6, 136.4, 133.8, 130.4, 129.6, 129.3, 128.6, 128.1, 127.9, 120.3, 113.9, 101.8, 44.5, 16.7; **HRMS** (ESI) m/z calcd for $[M + H]^+ C_{16}H_{13}ClN_3O_3$: 330.0640; found: 330.0648; **HPLC** (Daicel Chiralpak IC column, n-hexane/i-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C,

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	30.927	51.359	69.390	50.04
2	33.190	51.281	64.780	49.96

Integration Results

U				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	31.220	16.850	23.351	24.57
2	33.500	51.740	66.483	75.43

(*R*)-*N*-(2-cyano-4-nitrophenyl)-2-(3,4-dichlorophenyl)propanamide (3am)

24.0 mg, 66% yield, pale yellow solid; M.p. $178.9 - 179.6 \,^{\circ}C$; $[\alpha]_D^{20} = -0.015 \,(c = 0.1 \text{ in CH}_3\text{OH})$; ¹H NMR (400 MHz, CDCl₃) $\delta 8.78 - 8.67 \,(m, 1\text{H})$, 3.82 (q, $J = 7.1 \,\text{Hz}$, 1H), 1.64 (d, $J = 7.1 \,\text{Hz}$, 3H); ¹³C NMR (101 MHz, CDCl₃) $\delta 171.7$, 145.0, 142.8, 139.1, 133.7, 132.7, 131.5, 129.6, 129.5, 127.8, 126.9, 120.4, 114.1, 101.9, 47.7, 18.1; HRMS (ESI) m/z calcd for $[M + \text{H}]^+ C_{16}\text{H}_{12}\text{Cl}_2\text{N}_3\text{O}_3$: 364.0250; found: 364.0259; HPLC (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: $t_{\text{major}} = 15.057 \,\text{min}, t_{\text{minor}} = 12.297 \,\text{min}, 88:12 \,\text{e.r.}$).

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	12.117	23.369	58.745	50.41
2	14.850	22.993	49.728	49.59

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	12.297	1.349	3.605	11.92
2	15.057	9.964	22.132	88.08

(R)-N-(2-cyano-4-nitrophenyl)-2,3-dihydro-1H-indene-1-carboxamide (3an)

18.4 mg, 60% yield, pale yellow solid; M.p. 152.8 – 153.5 °C; $[\alpha]_D^{20} = -$ 0.017 (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.85 – 8.71 (m, 1H), 8.53 – 8.28 (m, 2H), 8.08 (s, 1H), 7.49 – 7.28 (m, 4H), 4.26 – 4.16

(m, 1H), 3.24 - 3.13 (m, 1H), 3.09 - 2.98 (m, 1H), 2.67 - 2.47 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 145.4, 144.8, 142.7, 139.0, 129.4, 128.9, 127.9, 127.6, 125.8, 124.9, 120.4, 114.0, 101.8, 53.7, 31.6, 30.5; **HRMS** (ESI) m/z calcd for [M + H]⁺ C₁₇H₁₄N₃O₃: 308.1030; found: 308.1036; **HPLC** (Daicel Chiralpak IC column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.5 mL/min, 254 nm, 25 °C, retention time: t_{major} = 37.457 min, t_{minor} = 15.100 min, 72:28 e.r.).

integration neodito				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	15.067	14.133	32.241	49.92
2	37.573	14.176	12.955	50.08

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	15.100	21.300	48.935	27.95
2	37.457	54.903	48.887	72.05

(*R*)-*N*,2-diphenylpropanamide (3ba)⁴

21.4 mg, 95% yield, white solid; M.p. 126.8 – 127.5 °C; $[\alpha]_D^{20} = -0.137$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.22 (m, 9H), 7.14 – 7.01 (m, 2H), 3.71 (q, *J* = 7.1 Hz, 1H), 1.60 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 140.9, 137.8, 129.1, 128.9, 127.7, 127.6, 124.2, 119.7, 48.1, 18.5; HRMS (ESI) m/z calcd for [M+H]⁺ C₁₅H₁₆NO: 226.1226; found: 226.1223; HPLC (Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: t_{major} = 15.237 min, t_{minor} = 13.430 min, 82:18 e.r.).

(*R*)-*N*-(4-bromophenyl)-2-phenylpropanamide (3ca)⁴

26.5 mg, 87% yield, white solid; M.p. 110.1 – 110.9 °C; $[\alpha]_D^{20} = -0.064$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.27 (m, 9H), 7.16 (s, 1H), 3.70 (q, J = 7.2 Hz, 1H), 1.58 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 140.6, 136.9, 131.8, 129.2, 127.6,

121.2, 116.7, 116.7, 48.1, 18.5; **HRMS** (ESI) m/z calcd for $[M+H]^+ C_{15}H_{15}BrNO$: 304.0332; found: 304.0331; **HPLC** (Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: $t_{major} = 20.832$ min, $t_{minor} = 18.663$ min, 80:20 e.r.).

S22

(*R*)-*N*-(4-chlorophenyl)-2-phenylpropanamide (3da)⁴

23.4 mg, 90% yield, white solid; M.p. 101.3 – 102.0 °C; $[\alpha]_D^{20} = -0.131$ (c = 0.1 in CH₃OH); ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.06 (m, 10H), 3.70 (q, *J* = 7.1 Hz, 1H), 1.58 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 140.6, 136.4, 129.1, 129.1, 128.8, 127.6, 121.1,

47.9, 18.5; **HRMS** (ESI) m/z calcd for $[M+H]^+C_{15}H_{15}CINO$: 260.0837; found: 260.0834; **HPLC** (Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: $t_{major} = 19.800 \text{ min}, t_{minor} = 18.157 \text{ min}, 80.5:19.5 \text{ e.r.}$).

(*R*)-*N*-(4-fluorophenyl)-2-phenylpropanamide (3ea)⁴

21.4 mg, 88% yield, white solid; M.p. 92.8 – 93.7 °C; $[\alpha]_D^{20} = -0.120$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.26 (m, 8H), 6.93 (t, J = 8.4 Hz, 2H), 3.70 (q, J = 7.1 Hz, 1H), 1.57 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 159.3 (d, $J_{C-F} = 243.1$ Hz), 140.8, 133.8 (d, $J_{C-F} = 3.2$ Hz), 129.1, 127.6, 127.5, 121.7 (d, $J_{C-F} = 8.1$ Hz), 115.4 (d, $J_{C-F} = 22.4$ Hz), 47.8, 18.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -118.0; HRMS (ESI) m/z calcd for [M + H]⁺ C₁₅H₁₅FNO: 244.1132; found: 244.1130; HPLC (Daicel Chiralpak AS-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: t_{major} = 12.587 min, t_{minor} = 9.563 min, 79:21 e.r.).

S24

(*R*)-2-phenyl-*N*-(p-tolyl)propanamide (3fa)⁴

22.0 mg, 92% yield, white solid; M.p. 116.4 – 118.2 °C; $[\alpha]_D^{20} = -0.186$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.14 (m, 8H), 7.05 (d, J = 8.0 Hz, 2H), 3.69 (q, J = 7.2, 6.6 Hz, 1H), 2.27 (s, 3H), 1.57 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 141.0, 135.3, 133.8, 129.3, 129.0, 127.6, 127.4, 119.8, 47.9, 20.8, 18.5; HRMS (ESI) m/z calcd for [M+H]⁺ C₁₆H₁₈NO: 240.1383; found: 240.1390; HPLC (Daicel Chiralpak IC-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0

(*R*)-*N*-(4-methoxyphenyl)-2-phenylpropanamide (3ga)⁴

22.7 mg, 89% yield, white solid; M.p. 133.2 - 133.8 °C; $[\alpha]_D^{20} = -0.194$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.26 (m, 7H), 7.08 (s, 1H), 6.84 – 6.72 (m, 2H), 3.75 (s, 3H), 3.69 (q, *J* = 7.1 Hz, 1H), 1.58 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 156.3, 141.1, 130.9, 129.1, 127.7, 127.5, 121.6, 114.0, 55.4, 47.8, 18.6; HRMS (ESI) m/z calcd for [M+H]⁺C₁₆H₁₈NO₂: 256.1332; found: 256.1324; HPLC (Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: t_{major} = 37.890 min, t_{minor} = 26.963 min, 79:21 e.r.).

(*R*)-*N*-(2-bromophenyl)-2-phenylpropanamide (3ha)⁵

Br 24.9 mg, 82% yield, white solid; M.p. 83.3 - 84.6 °C; $[\alpha]_D^{20} = -0.077$ (c = 0.1 in CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.3 Hz, 1H), 7.61 (s, 1H), 7.45 - 7.19 (m, 8H), 6.91 (t, J = 7.7 Hz, 1H), 3.79 (q, J = 7.2 Hz, 1H), 1.65 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 140.2, 135.6, 132.1, 129.3, 128.3, 127.9, 127.8, 125.0, 121.3, 113.1, 48.4, 17.9; HRMS (ESI) m/z calcd for [M+H]⁺ C₁₅H₁₅BrNO: 304.0332; found: 304.0340; HPLC (Daicel Chiralpak OD-H column, *n*-hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: t_{minor} = 6.503 min, t_{major} = 7.520 min, 86:14 e.r.).

(R)-N-(2,4-dinitrophenyl)-2-phenylpropanamide (3ia)

27.7 mg, 88% yield, white solid; M.p. 129.0 – 129.7 °C; $[\alpha]_D^{20} = -0.129$ (c = 0.1 in CH₃OH); ¹**H NMR** (400 MHz, CDCl₃) δ 10.58 (s, 1H), 9.21 – 8.94 (m, 2H), 8.55 – 8.33 (m, 1H), 7.52 – 7.30 (m, 5H), 3.88 (q, *J* = 7.1 Hz, 1H), 1.66 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.7,

141.5, 139.9, 138.9, 134.7, 130.1, 129.5, 128.3, 127.8, 122.0, 121.9(7), 49.3, 17.7; **HRMS** (ESI) m/z calcd for $[M+H]^+C_{15}H_{14}ClN_3O_5$: 316.0928; found: 316.0933; **HPLC** (Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: $t_{major} = 13.300 \text{ min}$, $t_{minor} = 14.853 \text{ min}$, 90:10 e.r.).

integration results						
Peak Name	Retention Time	Area	Height	Relative Area		
	min	mAU*min	mAU	%		
1	13.303	668.542	2286.699	50.04		
2	14.663	667.587	1829.493	49.96		

Integration Results				
Peak Name	Retention Time	Area	Height	Relative Area
	min	mAU*min	mAU	%
1	13.300	787.673	2719.675	89.97
2	14.853	87.829	274.554	10.03

(*R*)-1-(2-phenylpropanoyl)-1*H*-pyrrole-2-carbonitrile (3ja)³

21.3 mg, 95% yield, white solid; M.p. 75.6 – 76.7 °C; $[\alpha]_D^{20} = -10.340$ (c = 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.26 (m, 6H), 6.96 (s, 1H), 6.23 (s, 1H), 4.42 (q, J = 6.8 Hz, 1H), 1.63 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 139.3, 129.4, 127.8, 127.1, 126.4, 124.7, 113.2, 113.0, 103.6, 45.8, 20.1; HRMS (ESI) m/z calcd for [M+Na]⁺ C₁₄H₁₂N₂NaO: 247.0842; found: 247.0833; HPLC (Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: t_{major} = 12.080 min, t_{minor} = 9.757 min, 97:3 e.r.).

S29

(*R*)-1-(2-phenylbutanoyl)-1*H*-pyrrole-2-carbonitrile (3jo)³

21.2 mg, 89% yield, white solid, M.p. 85.7-87.3 °C; $[\alpha]_D^{20} = -3.628$ (c = 0.2 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.18 (m, 6H), 6.96 (s, 1H), 6.25 (q, *J* = 3.0 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 1H), 2.30-2.21 (m, 1H), 1.98-1.87 (m, 1H), 0.96 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 137.5,

129.3, 128.0, 127.7, 126.5, 124.6, 113.2, 112.9, 103.6, 53.1, 27.7, 11.9; **HRMS** (ESI) m/z calcd for $[M+Na]^+ C_{15}H_{14}N_2NaO$: 261.0998; found: 261.0991; **HPLC** (Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: $t_{major} = 8.363$ min, $t_{minor} = 7.610$ min, 94:6 e.r.).

(R)-1-(2-(4-isobutylphenyl)propanoyl)-1H-pyrrole-2-carbonitrile (3jp)

25.2 mg, 90% yield, white solid, M.p. 85.7-87.3 °C; $[\alpha]_D^{20} = -1.891$ (c = 0.1 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 1H), 7.20 (d, J =8.2 Hz, 2H), 7.12 (d, J = 8.2 Hz, 2H), 6.95 (s, 1H), 6.23 (s, 1H), 4.37 (q, J = 6.9 Hz, 1H), 2.44 (d, J = 7.2 Hz, 2H), 1.88-1.78 (m, 1H), 1.61 (d, J = 6.8 Hz, 3H), 0.88 (d, J =6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 141.4, 136.5, 130.1, 126.8, 126.3, 124.8, 113.2, 112.9, 103.6, 45.4, 44.9, 30.1, 22.3, 20.1; HRMS (ESI) m/z calcd for [M+Na]⁺ C₁₈H₂₀N₂NaO: 303.1468; found: 303.1460; HPLC (Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: t_{major} = 7.583 min, t_{minor} = 6.037 min, 95:5 e.r.).

(R)-2-phenyl-1-thiomorpholinopropan-1-one (3ka)

21.6 mg, 92% yield, colorless oil, $[\alpha]_D^{20} = -0.073$ (c = 0.1 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.29 (m, 2H), 7.28-7.19 (m, 3H), 4.38-4.16 (m, 1H), 3.83 (q, *J* = 6.9 Hz, 1H), 3.79-3.69 (m, 1H), 3.64-3.41 (m, 2H), 2.63-2.44 (m, 2H), 2.27-2.18 (m, 1H), 1.94-1.84 (m, 1H), 1.44 (d, *J* = 6.8 Hz, 3H); ¹³C NMR

(101 MHz, CDCl₃) δ 171.9, 141.8, 129.0, 127.2, 126.9, 48.1, 44.6, 43.5, 27.2, 27.0, 20.8; **HRMS** (ESI) m/z calcd for [M+H]⁺ C₁₃H₁₈NOS: 235.3450; found: 235.3456; **HPLC** (Daicel Chiralpak IC-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 220 nm, 25 °C, retention time: t_{major} = 14.943 min, t_{minor} = 13.200 min, 61.5:38.5 e.r.).

(R)-4-bromo-N-(2-phenylpropyl)aniline (4)

27.0 mg, 93% yield, colorless oil; $[\alpha]_D^{20} = 0.113$ (c = 0.2 in CHCl₃); ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (t, J = 7.4 Hz, 2H), 7.28-7.19 (m, 5H), 6.43 (d, J = 8.3 Hz, 2H), 3.59 (s, 1H), 3.33-3.28 (m, 1H), 3.22-3.17

(m,1H), 3.08-3.01 (m, 1H), 1.33 (d, J = 6.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 144.2, 131.9, 128.7, 127.2, 126.7, 114.5, 108.8, 50.8, 39.1, 19.7; HRMS (ESI) m/z calcd for [M+H]⁺ C₁₅H₁₇BrN: 290.0539; found: 290.0533; HPLC (Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: t_{major} = 7.410 min, t_{minor} = 6.523 min, 73:27 e.r.).

(*R*)-2-(4-isobutylphenyl)propanoic acid (5)⁶

HO [] O

17.5 mg, 85% yield, white solid; $[\alpha]_D^{20} = -23.597$ (c = 0.5 in CHCl₃); ¹**H NMR** (400 MHz, CDCl₃) δ 11.40 (s, 1H), 7.21 (d, J = 7.7 Hz, 2H), 7.08 (d, J = 7.7 Hz, 2H), 3.69 (q, J = 7.3 Hz, 1H), 2.43 (d, J = 7.2 Hz, 2H), 1.88-1.78 (m, 1H), 1.48 (d, J = 7.2 Hz, 3H), 0.89 (d, J = 6.5 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃)

δ 181.3, 140.8, 137.0, 129.3, 127.3, 45.01, 44.99, 30.1, 22.4, 18.0; HPLC (Daicel Chiralpak OJ-H column, n-hexane/i-PrOH = 95/5, flow rate = 1.0 mL/min, 254 nm, 25 °C, retention time: t_{major} = $12.887 \text{ min}, t_{\text{minor}} = 14.903 \text{ min}, 94:6 \text{ e.r.}).$

S34

References

 B. Xu, S.-F. Zhu, X.-D. Zuo, Z.-C. Zhang and Q.-L. Zhou, Enantioselective N-H Insertion Reaction of α-Aryl α-Diazoketones: An Efficient Route to Chiral α-Aminoketones, *Angew. Chem. Int. Ed.*, 2014, 53, 3913-3916.

2. Q. Lu, S. Mondal, S. Cembell ń and F. Glorius, MnI/AgI Relay Catalysis: Traceless Diazo-Assisted $C(sp^2)$ –H/C(sp³)–H Coupling to β -(Hetero)Aryl/Alkenyl Ketones, *Angew. Chem. Int. Ed.*, 2018, **57**, 10732-10736.

3. S. Cuesta-Galisteo, J. Schörgenhumer, C. Hervieu and C. Nevado, Dual Nickel/Photoredox-Catalyzed Asymmetric Carbamoylation of Benzylic C(sp3)-H Bonds, *Angew. Chem. Int. Ed.*, 2024, **63**, e202313717.

4. J.-B. Pan, Z.-C. Yang, X.-G. Zhang, M.-L. Li and Q.-L. Zhou, Enantioselective Synthesis of Chiral Amides by a Phosphoric Acid Catalyzed Asymmetric Wolff Rearrangement, *Angew. Chem. Int. Ed.*, 2023, **62**, e202308122.

5. T. Kubota, N. Sawada, L.-L. Zhou and C. J. Welch, Enantioseparation of benzazoles and benzanilides on polysaccharide-based chiral columns, *Chirality*, 2009, **22**, 382-388.

6. Y.-H. Yao, H.-Y. Yang, M. Chen, F. Wu, X.-X. Xu and Z.-H. Guan, Asymmetric Markovnikov Hydroaminocarbonylation of Alkenes Enabled by Palladium-Monodentate Phosphoramidite Catalysis, *J. Am. Chem. Soc.*, 2021, **143**, 85–91.

5. NMR Spectra

¹³C NMR spectrum of compound (**3aa**)

¹H NMR spectrum of compound (**3ab**)

¹³C NMR spectrum of compound (**3ab**)

¹H NMR spectrum of compound (**3ac**)

¹³C NMR spectrum of compound (**3ac**)

¹H NMR spectrum of compound (**3ad**)

¹³C NMR spectrum of compound (**3ad**)

¹⁹F NMR spectrum of compound (**3ad**)

¹H NMR spectrum of compound (**3ae**)

¹³C NMR spectrum of compound (**3ae**)

¹⁹F NMR spectrum of compound (3ae)

¹H NMR spectrum of compound (**3af**)

¹³C NMR spectrum of compound (**3af**)

¹H NMR spectrum of compound (**3ag**)

¹³C NMR spectrum of compound (**3ag**)

¹H NMR spectrum of compound (**3ah**)

¹³C NMR spectrum of compound (**3ah**)

¹H NMR spectrum of compound (**3ai**)

¹³C NMR spectrum of compound (3ai)

¹⁹F NMR spectrum of compound (3ai)

¹H NMR spectrum of compound (**3aj**)

¹³C NMR spectrum of compound (**3aj**)

¹H NMR spectrum of compound (**3ak**)

¹³C NMR spectrum of compound (**3ak**)

¹H NMR spectrum of compound (**3al**)

¹³C NMR spectrum of compound (**3al**)

¹H NMR spectrum of compound (**3am**)

¹³C NMR spectrum of compound (**3am**)

¹H NMR spectrum of compound (**3an**)

¹³C NMR spectrum of compound (**3an**)

¹H NMR spectrum of compound (**3ba**)

¹³C NMR spectrum of compound (**3ba**)

¹H NMR spectrum of compound (**3ca**)

¹³C NMR spectrum of compound (**3ca**)

¹H NMR spectrum of compound (**3da**)

¹H NMR spectrum of compound (**3ea**)

¹⁹F NMR spectrum of compound (3ea)

¹H NMR spectrum of compound (**3fa**)

20 210

200

190 180 170

160 150

140 130 120

110 f1 (ppm) 100 90 80 70 60 50 40 30

10

¹H NMR spectrum of compound (**3ga**)

¹³C NMR spectrum of compound (**3ga**)

¹H NMR spectrum of compound (**3ha**)

¹H NMR spectrum of compound (**3ia**)

¹³C NMR spectrum of compound (**3ia**)

¹H NMR spectrum of compound (**3ja**)

¹H NMR spectrum of compound (**3jo**)

¹H NMR spectrum of compound (**3jp**)

¹H NMR spectrum of compound (**3ka**)

¹H NMR spectrum of compound (4)

¹³C NMR spectrum of compound (4)

¹H NMR spectrum of compound (**5**)

