Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Modulating nonlinear optical properties of TIDC-Cl by varying the terminal units

Cheng Ma^a, Lijing Gong^{*b}, Wanfeng Lin^b, Jinkai Lv^b and Huan Guo^b Jilin Animation Institute, Changchun 130032 Jilin, China Air Force Aviation University, Changchun 130022, China

Contents

In	index Page														
1.	Electron density difference maps of the studied moleculesS2														
2.	The	computed	absorption	peak	using	the	different	functionals	at	6-31G(d,p)	basis	set	level	for	TIDC-
	Cl·····		S2												
3.	The d	calculated is	otropic polar	izability	$lpha_{ m iso}$ va	lues ir	n the zero-	frequency lin	nit a	nd frequency	-depend	dent o	ase of	the s	tudied
	deriva	atives			at			CAM-	B3LY	P/6-31+G(d)					level
										···S2					
4.	The c	alculated ${m heta}_{{\scriptscriptstyle \sf H}{\scriptscriptstyle \sf H}}$	_{rs} values in th	e zero-f	requent	cy limi	t and frequ	ency-depende	ent ca	ase of the stu	died der	ivativ	es at CA	AM-B3	LYP/6-

Fig. S1. Electron density difference maps of the studied molecules. Blue and purple colors represent depletion and accumulation of electron density, respectively.

Table S1. The computed absorption peak (λ , nm) using the different functionals at 6-31G(d,p) basis set level for TIDC-Cl along with the experimental value. The data in parentheses is the oscillator strength corresponding to the main electronic transition.

Functional	B3LYP	CAM-B3LYP	M062X	BH&HLYP	wB97XD	Exp
λ ₁	666.75(1.994)	537.14(2.940)	541.09(2.905)	545.46(2.978)	519.51(3.000)	643
λ_2	567.23(0.726)	402.53(0.184)	401.49(0.183)	400.24(0.198)	393.46(0.164)	597
λ ₃	328.11(0.414)	290.13(0.427)	295.81(0.333)	297.20(0.487)	316.32(0.495)	335

Table S2. The calculated isotropic polarizability α_{iso} values (×10⁻²³ esu) in the zero-frequency limit and frequency-dependent case (λ = 1907, 1460, 1340, and 1180 nm) of the studied derivatives at CAM-B3LYP/6-31+G(d) level.

Derivatives	<i>α</i> _{iso,∞}	$lpha_{ m iso,1907}$	$lpha_{ m iso,1460}$	$lpha_{ m iso,1340}$	α _{iso,1180}
TIDC-CI	19.0	19.5	19.9	20.1	20.5
1	17.8	18.1	18.2	18.3	18.5
2	17.2	17.5	17.8	17.9	18.1
3	18.2	18.6	18.9	19.1	19.4
4	17.8	18.1	18.3	18.4	18.7

5	18.3	19.3	19.6	19.7	20.1
-					

Table S3. The calculated β_{HRS} values (×10⁻³⁰ esu) in the zero-frequency limit and frequency-dependent case (λ = 1907, 1460, 1340, and 1180 nm) of the studied derivatives at CAM-B3LYP/6-31+G(d) level.

Derivatives	$\boldsymbol{\theta}_{HRS,}$	$\theta_{HRS,190}$	$m{ extsf{ heta}}_{HRS,146}$	β _{HRS,134}	Burg 1100	
Derivatives	~	7	0	0	OHK5,1180	
TIDC-CI	37.6	61.7	96.0	122.8	227.9	
1	10.5	13.1	15.6	17.1	20.5	
2	68.6	123.6	218.0	305.8	822.0	
3	85.9	123.1	167.2	201.4	448.3	
4	242.2	447.4	841.0	1259.7	5197.5	
5	300.5	493.5	780.9	1011.6	1913.3	