Supplementary Information

Theoretical Exploration of 4π-Photocyclization Mechanism of α-Tropone Derivatives

Cristian Guerra^{*abc}, Yeray A. Rodríguez-Núñez^d, Manuel E. Taborda-Martínez^e, Mitchell Bacho^f, Rafael Mirada-Pastrana^c, and Adolfo E. Ensuncho^c

^aUniversidad Andrés Bello. Departamento de Ciencias Químicas. Facultad de Ciencias Exactas. Avenida República 275, 8370146, Santiago de Chile, Chile.

^bUniversidad Autónoma de Chile. Facultad de Ingeniería. Avenida Pedro de Valdivia 425, 7500912, Santiago de Chile, Chile.

^cUniversidad de Córdoba. Grupo de Química Computacional. Facultad de Ciencias Básicas. Carrera 6 No. 77-305, Montería-Córdoba, Colombia.

^dUniversidad Andrés Bello, Laboratorio de Síntesis Orgánica y Organometálica. Centro de Química Teórica y Computacional (CQTC), Facultad de Ciencias Exactas, Avenida República 275, 8370146, Santiago de Chile, Chile

^eUniversidad del Magdalena. Facultad de Ciencias de la Educación. Carrera 32 No 22 – 08 Santa Marta D.T.C.H, 470004, Colombia.

^fDepartamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus los Leones, Lota 2465, Providencia, Santiago, Chile.

This file includes:

- $\label{eq:stemp} \begin{array}{ll} & \mbox{Wavelengths associated with the $S_0 \rightarrow S_n$ excitations for the substituted α-tropone} \\ & \mbox{systems calculated using the cc-PVDZ basis set.} \end{array}$
- $\label{eq:static} 2 \quad \mbox{Wavelengths associated with the S_0} \rightarrow S_n \mbox{ excitations for the substituted α-tropone $$S$ systems calculated using the cc-PVTZ basis set. $$S$$
- 3 Optimized S_0/T_1 crossing geometries for the substituted α -tropone systems at CASSCF (12,10)/cc-pvdz level. S4
- 4 Energy gaps at the T₁/S₀ crossing for the substituted α -tropone systems. ($\Delta E_1 = S8 E(T_1) E(S_0)$ and $\Delta E_2 = E(S_1) E(S_0)$ in kcal mol⁻¹.
- 5 Spin-orbit couplings associated with T₁→S₀ and S₁→T₁ transitions calculated for S9 4π-photocyclization of 2-hydroxytropone, 2-chlorotropone, and hydroxytropenium ion.
- 6 Spin-orbit couplings associated with $T_1 \rightarrow S_0$ and $S_1 \rightarrow T_1$ transitions calculated for S9 4π -photocyclization of 2-methyl tropone, cycloheptatriene, and BF₃ tropone.
- 7 Relative energies for 4π -photocyclization of BF₃-tropone, 2-methyltropone, 2chloro tropone, and 2-hydroxy tropone in the T₁, S₁, and S₀ excited states.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>System</u>	<u>Excitation</u>	Wavelength	$\frac{(12,10)}{\text{Energy}(eV)}$	focs
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	System	Excitation	(nm)	Energy (CV)	1005
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_1$	323	3.8436	0.00012
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_1$ $S_0 \rightarrow S_2$	316	3 9233	0.00198
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1a	$S_0 \rightarrow S_3$	286	4 3295	0.06572
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_4$	249	4.9891	0.05579
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\tilde{S}_0 \rightarrow \tilde{S}_5$	191	6 4812	0.09936
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_1$	315	3 9344	0.00002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_2$	303	4 0938	0.00002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1b	$S_0 \rightarrow S_2$ $S_0 \rightarrow S_3$	274	4 0938	0.07167
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	$S_0 \rightarrow S_4$	260	4.7658	0.07093
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_5$	191	6.4929	0.10748
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_1$	324	3.8306	0.00135
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_2$	323	3.8355	0.00057
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1c	$S_0 \rightarrow S_3$	298	4.1602	0.10001
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_4$	253	4.8946	0.03199
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_5$	194	6.3826	0.12683
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_1$	311	3.9862	0.00019
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_2$	286	4.3379	0.09284
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1d	$S_0 \rightarrow S_3$	285	4.3442	0.00131
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_4$	247	5.0234	0.03248
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_5$	200	6.1958	0.26902
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_1$	310	3.9964	0.000003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_2$	304	4.0732	0.00080
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e	$S_0 \rightarrow S_3$	281	4.4192	0.00992
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$S_0 \rightarrow S_4$	254	4.8806	0.04776
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_5$	190	6.5246	0.11100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_1$	316	3.9230	0.00205
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_2$	313	3.9626	0.00003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1f	$S_0 \rightarrow S_3$	285	4.3578	0.08900
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_4$	261	4.7535	0.04146
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_5$	193	6.4167	0.13907
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_1$	304	4.0767	0.03672
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_2$	293	4.2282	0.00009
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lg	$S_0 \rightarrow S_3$	274	4.5319	0.00452
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_4$	264	4.6891	0.05689
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_5$	209	5.9450	0.08514
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mathbf{S}_0 \rightarrow \mathbf{S}_1$	270	4.3001	0.11852
In $S_0 \rightarrow S_3$ Z_{14} 5.7924 0.09830 $S_0 \rightarrow S_4$ 185 6.7023 0.53653 $S_0 \rightarrow S_5$ 164 7.5749 0.17250 $S_0 \rightarrow S_1$ 267 4.6460 0.02365 $S_0 \rightarrow S_2$ 250 4.9572 0.01671 1i $S_0 \rightarrow S_3$ 200 6.2023 0.05531 $S_0 \rightarrow S_4$ 180 6.8810 0.10230 $S_0 \rightarrow S_5$ 179 6.9462 0.06532	1h	$S_0 \rightarrow S_2$ $S_0 \rightarrow S_2$	230	4.0443 5 7071	0.00303
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	$S_0 \rightarrow S_3$	21 4 185	6 7023	0.09650
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_5$	164	7 5749	0.17250
$S_0 \rightarrow S_1$ Z_{57} 4.0400 0.02505 1i $S_0 \rightarrow S_2$ 250 4.9572 0.01671 $S_0 \rightarrow S_3$ 200 6.2023 0.05531 $S_0 \rightarrow S_4$ 180 6.8810 0.10230 $S_0 \rightarrow S_5$ 179 6.9462 0.06532		$\frac{S_0 \rightarrow S_3}{S_0 \rightarrow S_1}$	267	4 6460	0.02365
1i $S_0 \rightarrow S_3$ 200 6.2023 0.05531 $S_0 \rightarrow S_4$ 180 6.8810 0.10230 $S_0 \rightarrow S_5$ 179 6.9462 0.06532		$S_0 \rightarrow S_2$	250	4.9572	0.01671
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1i	$\tilde{S}_0 \rightarrow \tilde{S}_3$	200	6.2023	0.05531
$S_0 \rightarrow S_5$ 179 6.9462 0.06532		$S_0 \rightarrow S_4$	180	6.8810	0.10230
		$S_0 \rightarrow S_5$	179	6.9462	0.06532

Figure S1. Wavelengths, energy, and the oscillator strengths (focs) associated with the $S_0 \rightarrow S_n$ excitations for substituted α -tropone systems calculated at NEVPT2(12,10)/cc-PVDZ.

System	Excitation	Wavelength	$\frac{(12,10)(001012)}{\text{Energy}(eV)}$	focs
System	Excitation	(nm)	Energy (ev)	1005
	$S_0 \rightarrow S_1$	324	3.8303	0.00011
	$S_0 \rightarrow S_2$	319	3.8844	0.00202
1a	$S_0 \rightarrow S_3$	292	4.2415	0.06674
	$S_0 \rightarrow S_4$	254	4.8914	0.05736
	$S_0 \rightarrow S_5$	194	6.3905	0.09303
	$S_0 \rightarrow S_1$	318	3.9051	0.00002
	$S_0 \rightarrow S_2$	306	4.0571	0.00227
1b	$S_0 \rightarrow S_3$	285	4.3575	0.07708
	$S_0 \rightarrow S_4$	263	4.7224	0.06713
	$S_0 \rightarrow S_5$	194	6.3925	0.10632
	$S_0 \rightarrow S_1$	333	3.7242	0.00092
	$S_0 \rightarrow S_2$	323	3.8366	0.00076
1c	$S_0 \rightarrow S_3$	306	4.0516	0.10083
	$S_0 \rightarrow S_4$	258	4.8028	0.03257
	$S_0 \rightarrow S_5$	198	6.2750	0.12074
	$S_0 \rightarrow S_1$	313	3.9649	0.00018
	$S_0 \rightarrow S_2$	291	4.2657	0.08795
1d	$S_0 \rightarrow S_3$	290	4.2804	0.00123
	$S_0 \rightarrow S_4$	254	4.8750	0.03990
	$S_0 \rightarrow S_5$	204	6.0819	0.27366
	$S_0 \rightarrow S_1$	314	3.9517	0.000006
	$S_0 \rightarrow S_2$	308	4.0279	0.00068
1e	$S_0 \rightarrow S_3$	287	4.3190	0.09983
	$S_0 \rightarrow S_4$	260	4.7625	0.04852
	$S_0 \rightarrow S_5$	193	6.4215	0.10456
	$S_0 \rightarrow S_1$	319	3.8870	0.00182
	$S_0 \rightarrow S_2$	317	3.9173	0.00005
1f	$S_0 \rightarrow S_3$	290	4.2748	0.08955
	$S_0 \rightarrow S_4$	268	4.6286	0.04375
	$S_0 \rightarrow S_5$	196	6.3139	0.13339
	$S_0 \rightarrow S_1$	310	4.0022	0.03330
	$S_0 \rightarrow S_2$	294	4.2132	0.00008
1g	$S_0 \rightarrow S_3$	272	4.5518	0.00074
	$S_0 \rightarrow S_4$	271	4.5732	0.06166
	$S_0 \rightarrow S_5$	211	5.8884	0.08237
	$S_0 \rightarrow S_1$	285	4.3475	0.12064
	$S_0 \rightarrow S_2$	260	4.7733	0.00544
1h	$S_0 \rightarrow S_3$	213	5.8206	0.08413
	$S_0 \rightarrow S_4$	186	6.6668	0.49759
	$S_0 \rightarrow S_5$	169	7.3285	0.21000
	$S_0 \rightarrow S_1$	269	4.6032	0.02266
	$S_0 \rightarrow S_2$	255	4.8615	0.01837
li	$S_0 \rightarrow S_3$	207	6.1207	0.05609
	$S_0 \rightarrow S_4$	184	6.7576	0.11202
	$S_0 \rightarrow S_5$	182	6.8141	0.06550

Figure S2. Wavelengths, energy, and the oscillator strengths (focs) associated with the $S_0 \rightarrow S_n$ excitations for substituted α -tropone systems calculated at NEVPT2(12,10)/cc-PVTZ.

Optimized S_0/T_1 crossing geometries for the substituted α -tropone systems at CASSCF(12,10)/cc-PVDZ level.

1a				
С	-1.70245200	0.86111800	1.11183000	
С	-2.36444000	1.64636700	0.10247600	
С	-1.83467900	2.77414300	-0.63416200	
С	-1.52543900	1.57082800	2.22966800	
С	-1.29200100	3.86155300	-0.07400100	
С	-2.13809700	2.86443100	2.06071400	
С	-1.51620500	4.02048900	1.35640400	
Η	-1.53049800	-0.19941700	0.98896900	
Η	-3.07224200	1.07502800	-0.49603700	
Η	-1.93029500	2.71413000	-1.71181400	
Η	-1.15168600	1.20385500	3.17514400	
Η	-0.85271100	4.66820300	-0.63978700	
Ο	-1.31514700	5.07609200	1.97524100	
Η	-2.70349000	3.22308600	2.91805500	
1b				
С	-1.24269921	-1.89185769	0.92696219	
\mathbf{C}	-1.56855116	-1.32462948	-0.39032873	
\mathbf{C}	-1.82736944	0.01641707	-0.72196341	
C	-0.08198816	-1.50022461	1.40643229	
C	-1.15805800	1.11080468	-0.13547200	
C ĩ	0.54879014	-0.58844653	0.44442975	
C	0.12080233	0.85124118	0.44764970	
H	-1.92127670	-2.59098398	1.39570815	
H	-2.03304543	-2.03499219	-1.06931005	
н	-2.49/5//14	0.20350910	-1.55004064	
п	0.38338/1/	-1./9031323	2.33399337	
Н	-1.48254345	2.13044331	-0.2/369414	
	0.88100014	1./2/003/0	0.8/243/4/	
	1.83091982	-0.8/003341	0.24398231	
с ц	2.33694600	-0.13000000	-0.77917303	
п Ц	5.45/12/92 1.04000 25 6	-0.72919037	-1.01142030	
н	2 85039062	0.84036975	-0.40631226	
11 1c	2.03037002	0.04030773	-0.40031220	
C	-2.39265084	1.01270946	1.18570814	
C	-1.48174016	1.55993553	0.17738156	
Ĉ	-1.48793118	2.72036415	-0.49593907	
Ċ	-2.45496150	1.72348654	2.28736280	
С	-2.11402563	3.92636578	-0.01122795	
С	-1.58184105	2.89775940	2.14699808	
С	-2.04849553	4.08244433	1.38887212	
Η	-2.89039341	0.07231388	0.99887798	
Η	-0.85053344	0.79882691	-0.27571122	
Η	-0.87086742	2.79534305	-1.38112409	
Η	-3.01589511	1.51324125	3.18539382	
Η	-2.38373764	4.75153613	-0.65057867	

Ο	-2.27967666	5.17049128	1.99642492	
С	-0.62138939	3.14249540	3.18678000	
Ν	0.20533452	3.27317262	3.99674042	
1d				
С	-2.19590620	0.91841746	1.11225423	
С	-1.19279942	1.57127130	0.28339810	
С	-1.35058254	2.74510913	-0.51502416	
С	-2.58922038	1.66042069	2.14373716	
С	-1.95564463	3.89731159	-0.09744822	
С	-1.82140742	2.89894734	2.15991356	
С	-2.21109678	4.05467954	1.30047788	
Η	-2.51798799	-0.09045673	0.89550125	
Η	-0.47955418	0.87498354	-0.15250955	
Η	-0.89919818	2.72085499	-1.49817443	
Η	-3.29068720	1.39329467	2.92242640	
Ο	-2.66124087	5.08487332	1.80379654	
0	-1.32637242	3.30424481	3.35731645	
Η	-1.21015350	2.56858195	3.93616481	
Η	-2.13761850	4.72985382	-0.75948142	
1e				
С	-1.51391534	0.90423781	1.17636293	
С	-2.43729849	1.69448675	0.36085730	
C	-2.19138871	2.84850529	-0.40999784	
C	-0.98305185	1.58473161	2.19890778	
C	-1.27707610	3.86314423	-0.06261853	
C	-1.57086305	2.92925097	2.20580423	
C	-0.93741927	3.95403102	1.32174147	
Н	-1.36825471	-0.14532347	0.96216108	
H	-3.27653972	1.11634635	-0.01881540	
H	-2.8099/599	2.98939658	-1.28575810	
H	-0.29626568	1.21337353	2.94662501	
H	-0.98688033	4.64364887	-0.74881991	
O	-0.23772490	4.84331663	1.81667581	
C	-2.21952483	3.42145633	3.47582362	
H	-1.4//83105	3.5/32/690	4.264/9689	
H	-2./3460205	4.36//1028	3.31838020	
H 1 f	-2.94016393	2.08583174	3.83491512	
	2 27245491	0.06045190	1 15190502	
	-2.2/343461	1 5150000	1.13160392	
	-1.30100088	2 74462040	0.03130313	
	-1./1055610	2.74402049	-0.04020931	
	-2.16306646	2 02520208	2.2/1300/1	
C	-1.90929003 _1.9057/960	3.733337378 7 70220777	-0.03093800	
c	-1.29374200 _1 70001175	<u>2.79330727</u> <u>10101067</u>	1 36870066	
н	-1.72201175	-0.01404074	1.00079900	
н	-1 06208376	0 75429890	-0 58980158	
H	-1 61257114	2 71467191	-1 71679813	
H	-2 60668248	1 43885052	3 23686790	
H	-2.21346720	4.82889669	-0.59060218	

Ο	-1.78282037	5.10577550	1.99231123	
C1	-0.14066195	3.06723206	3.40868890	
1g				
C	-2.22629615	0.96488852	1.18566925	
С	-1.46570268	1.53929630	0.08608949	
С	-1.65870788	2.74920656	-0.59358705	
С	-2.21190918	1.71631510	2.29525393	
С	-2.09424507	3.95592212	0.00668329	
С	-1.34456540	2.87349334	2.07103500	
С	-1.87343678	4.07688930	1.38345742	
Н	-2.70437163	-0.00022771	1.07742787	
Η	-1.00100277	0.78523033	-0.54906543	
Н	-1.34732776	2.78316786	-1.63092380	
Η	-2.68226752	1.51171771	3.24852009	
Η	-2.38239111	4.81753218	-0.57727473	
0	-1.98613578	5.16278093	2.02839467	
Ν	-0.43349880	3.14423687	3.08016473	
Н	0.03286807	2.34185923	3.45546472	
Η	0.19430979	3.90516118	2.90964316	
1h				
С	-2.31882103	0.98013782	1.20580594	
С	-1.67089109	1.49110721	0.04931499	
С	-1.60229655	2.69737937	-0.60252471	
С	-2.21494627	1.75362955	2.33441405	
С	-1.86468484	3.96925060	-0.05395268	
С	-1.27073803	2.80674688	2.00985936	
С	-1.71964811	4.05167065	1.32696886	
Η	-2.73378509	-0.01767589	1.17657937	
Η	-1.41382018	0.68343836	-0.63613038	
Η	-1.31122892	2.64930087	-1.64415710	
Η	-2.51837758	1.49036127	3.33521315	
Η	-2.04744164	4.84110286	-0.66403106	
Ο	-1.85210458	5.08673525	2.03510503	
С	-0.01976441	2.88664652	2.76843315	
0	0.32648039	2.02557558	3.55107463	
Η	0.62271851	3.75414461	2.57671190	
1i				
С	-2.35166451	0.99619814	1.20630281	
С	-1.47224827	1.50371485	0.15596455	
C	-1.53054438	2.72323223	-0.55384043	
C	-2.38538980	1.75095511	2.31189417	
C ĩ	-1.96831655	3.95933651	-0.00163515	
C	-1.44900911	2.86557599	2.12562407	
C	-1.91180382	4.07623511	1.38594850	
H	-2.86130327	0.05045508	1.07509885	
H	-0.9/928845	0./168/61/	-0.41061894	
H	-1.12553979	2./2655695	-1.55/31242	
H	-2.94208/33	1.5/089/49	5.2208/805	
П	-2.20424885	4.81483886	-0.01/05418	
U	-2.18/3//32	5.12283151	2.043/450/	

С	-0.40468467	3.06948819	3.18411399
F	0.26823964	1.94988737	3.39516551
F	-0.93389113	3.42046274	4.34858425
F	0.46734583	4.00080815	2.85010751
3a			
С	-1.71599073	0.84484084	1.07818460
С	-2.41261516	1.67549014	0.10550760
С	-1.76510903	2.70656566	-0.67927439
С	-1.48714834	1.55536086	2.19777033
С	-1.18840462	3.82500425	-0.07022267
С	-1.99848229	2.90499538	2.10450578
С	-1.56878048	3.98406390	1.29273697
Η	-1.57587589	-0.21632845	0.94362168
Η	-3.25455276	1.20635170	-0.39380080
Η	-1.81023830	2.64179455	-1.75780441
Η	-1.15356168	1.17506147	3.15122967
Η	-0.71828142	4.62044508	-0.62746992
0	-1.65062050	5.15366925	1.85069125
Η	-2.49741812	3.26997886	2.99697705
Η	-1.44843605	5.87716723	1.27015264
3b			
С	-1.61085656	0.92084022	0.72303685
С	-2.52402826	1.83381803	0.08663141
С	-2.40195075	3.16608158	-0.31176581
С	-1.03284875	1.39416867	1.85479712
С	-1.57651975	4.13594551	0.23646053
С	-1.67603412	2.66402232	2.16246501
С	-1.15229898	3.90949353	1.56689106
Η	-1.50206434	-0.07836232	0.32853178
Η	-3.31453258	1.32698654	-0.45928858
Η	-3.03386461	3.45533563	-1.14106256
Η	-0.33791580	0.89787021	2.51224813
Η	-1.40367072	5.08732713	-0.23988849
0	-0.47318597	4.73808317	2.20413353
Η	-2.19399487	2.78166520	3.10531679
В	-0.03908173	4.52663294	3.78956816
F	0.82414668	5.54315820	3.99323565
F	0.52436546	3.27692368	3.83467212

Table S3. Energy gaps at the T_1/S_0 crossing for the substituted α -tropone systems. ($\Delta E_1 = E(T_1) - E(S_0)$ and $\Delta E_2 = E(S_1) - E(S_0)$ in kcal mol⁻¹.

Reaction	ΔE_1	ΔE_2
<i>1a</i>	0.19	29.28
1b	1.15	1.78
<i>lc</i>	2.92	26.61
1 <i>d</i>	1.14	5.05
1e	0.61	15.41
lf	0.74	21.06
lg	6.19	9.39
1 <i>h</i>	0.79	22.32
1i	0.50	24.47
<i>3a</i>	1.04	7.28
3b	0.95	17.41

Figure S1. Spin-orbit couplings associated with $T_1 \rightarrow S_0$ and $S_1 \rightarrow T_1$ transitions calculated for 4π -photocyclization of 2-hydroxy tropone, 2-chloro tropone, and hydroxytropenium ion.

Figure S2. Spin-orbit couplings associated with $T_1 \rightarrow S_0$ and $S_1 \rightarrow T_1$ transitions calculated for 4π -photocyclization of 2-methyl tropone, cycloheptatriene, and BF_3 tropone.

Figure S3. Relative energies for 4π -photocyclization of BF₃-tropone, 2-methyl tropone, 2-chloro tropone, and 2-hydroxy tropone in the $T_{I_1}S_{I_2}$ and S_0 excited states.