Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary information

Two Ni/Ce complexes based on bicompartmental ligands with field supported slow magnetic relaxation

Lenka Krešáková^a, Miroslava Litecká^b, Itziar Oyarzabal^{c,d}, Ján Titiš^e, Michaela Červeňáková^e Elizabeth Hillard^f, Jerome Robert^g, Juraj Černák^{*a}

^aDepartment of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia

^bDepartment of Materials Chemistry, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež, 25068 Řež, Czech Republic

^cBCMaterials - Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain

dIKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain

^eDepartment of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius

Nám. J. Herdu 2, 91701 Trnava, Slovakia

^fUniv. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France

^gUniversité de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, F-67000 Strasbourg, France

*Correspondence e-mail: juraj.cernak@upjs.sk

Analytical data

H₂(o-van-dap)

Anal. [%], calculated for $C_{19}H_{22}N_2O_4$: C, 66.65; H, 6.48; N, 8.18; found: C, 67.01; H, 6.48; N, 8.23.

FT-IR (cm⁻¹): 3054w, 2993w, 2962w, 2937w, 2900w, 2834w, 2595br, 1623s, 1471m, 1461s, 1422m, 1345w, 1329w, 1252s, 1170m, 1139m, 1078s, 1039m, 998w, 967m, 937w, 913w, 873w, 838s, 776s, 731s, 636m, 615w, 590w, 572w, 604w, 440m, 416w.

¹H NMR (ppm): 1.32d (3H); 3.74s (5H); 3.76s (3H); 3.78m (1H); 6.79q (2H); 6.98dd (1H); 7.00m (1H); 7.03d (2H); 8.54s (1H); 8.56s (1H); 13.57s (OH); 13.59s (OH).

¹³C NMR (ppm): 19.9 (CHCH₃); 55.5 (OCH₃); 55.7 (OCH₃); 63.4 (CHCH₃); 64.1 (CHCN); 114.8 (ArC3); 117.8 (ArC4); 117.9 (ArC5); 118.2 (ArC6); 118.3 (ArC5); 123.1 (ArC6); 123.2 (ArC4); 147.9 (ArC1-OCH₃); 148.0 (ArC18-OCH₃). 151.2 (ArC7-OH); 151.5 (ArC16OH); 165.3 (C=N); 167.1 (C=N).

H₂(*o*-van-dmdap)

Anal. [%], calculated for $C_{21}H_{26}N_2O_4$: C, 68.09; H, 7.07; N, 7.56; found: C, 68.44; H, 7.18; N, 7.46.

FT-IR (cm⁻¹): 3077w, 3005w, 2956w, 2890w, 2588br, 1626s, 1469s, 1458s, 1440m, 1418m, 1393w, 1372w, 1338m, 1286w, 1268w, 1247s, 1167m, 1154w, 1077m, 1037s, 974m, 966w, 920w, 870m, 840m, 835w, 782s, 740s, 727s, 636m, 580w, 565w, 548w, 535w, 503, 438w, 416w.

¹H NMR (ppm): 0.99s (3H); 3.49d (1H); 3.78d (3H); 6.81td (1H); 7.02m (1H); 7.05m (1H); 8.53s (2H); 13.88s (OH).

¹³C NMR (ppm): 23.6 (CCH₃); 35.8 (CCH₃); 55.7 (OCH₃); 66.6 (NCH₂); 114.7 (ArC3); 117.8 (ArC4); 118.3 (ArC6); 123.2 (ArC5); 148.0 (ArC1-OCH₃); 151.7 (ArC7-OH); 166.8 (C=N).

[Ni(o-van-dap)Ce(H₂O)(NO₃)₃](1)

Anal [%], calculated for $C_{19}H_{22}N_5O_{14}NiCe: C, 30.71$; H, 2.98; N, 9.42; found: C, 31.02; H, 3.19; N, 9.27.

FT-IR (cm⁻¹) (1): 3396br, 2988w, 2953w, 2851w, 1627m, 1608m, 1561w, 1504m, 1471s, 1459s, 1440s, 1407m, 1398m, 1334m, 1314m, 1288s, 1250s, 1233s, 1204w, 1170m, 1126w, 1099w, 1078m, 1049w, 1032m, 968m, 945w, 883w, 856m, 816m, 786m, 737s, 684w, 665w, 637w, 626w, 585w, 546w, 530w, 489w, 472w, 441w, 416w.

$[Ni(H_2O)_2(o-van-dmdap)Ce(NO_3)_3] (2)$

Anal [%], calculated for $C_{21}H_{28}N_5O_{15}NiCe: C$, 31.96; H, 3.58; N, 8.87; found: C, 31.73; H, 3.29; N, 8.80.

FT-IR (cm⁻¹) (**2**): 3502m, 3427m, 2996w, 2949w, 1644m, 1630s, 1606m, 1561w, 1506m, 1491m, 1459s, 1453s, 1409m, 1391m, 1369w, 1325m, 1289s, 1240w, 1219s, 1168w, 1105w, 1066s, 1050w, 1024s, 1003w, 968m, 927m, 903w, 881w, 849m, 815w, 799w, 786w, 779w, 745m, 734s, 643m, 613w, 565w, 551w, 537w, 477m, 454w, 443w, 429w, 406w.

Complex/	Chromophore	Ni…Ce	Magnetism,
Refcode, Reference		distance [Å]	type of interaction
NiCe dinuclear complexes			
[Ni(o-van-en)CeCl ₃ (H ₂ O)]	${NiO_2N_2} (D_{4h})$	3.41	field induced
BORDOE [1]	$\{CeO_5Cl_3\}$		SMM,
			NI
$[(MeCN)_2Ni(o-van-pn)Ce(NO_3)_3(H_2O)]$	${NiO_2N_4}$ (O _h)	3.61	DC,
[(MeCN)(H ₂ O)Ni(<i>o</i> -van-pn)	${NiO_3N_3}$		AF,
$Ce(NO_3)_2(H_2O)_2](NO_3) \cdot 2MeCN$	$\{CeO_{10}\}$		not measured
IWUSOJ [2]			
[Ni(o-evan-trans-dach)	${NiO_2N_2} (D_{4h})$	3.57	DC,
$Ce(H_2O)(NO_3)_3]$	$\{CeO_{11}\}$		NI
MABMOT [3]			
$[(MeCN)_2Ni(o-van-pn)Ce(NO_3)_3]$	${NiO_2N_4} (O_h)$	3.56	_
NOVMIW [4]	$\{CeO_{10}\}$		
[Ni(o-van-dach)Ce(H ₂ O)(NO ₃) ₃]	${NiO_2N_2} (D_{4h})$	3.35	DC,
QULYED [5]	$\{CeO_{11}\}$		NI
[Ni(o-evan-en)Ce(NO ₃) ₃]	${NiO_2N_2} (D_{4h})$	3.49	DC,
SAQCOD [6]	$\{CeO_{10}\}$		NI
<i>Ni</i> ₂ <i>Ce trinuclear complexes</i>			
$[(Ni(o-van-en))_2$	${NiO_2N_2} (D_{4h})$	3.50	_
$Ce(NO_3)_2(H_2O)](NO_3)$	$\{CeO_{12}\}$		
MEFYAA [7]			
$[(Ni(o-hap-pn))_2Ce(NO_3)_3]$	${NiO_2N_2} (D_{4h})$	3.44, 3.33	_
PABWEX [8]	$\{CeO_{10}\}$		
[(Ni(MeOH)(Br-o-van-en)) ₂	${NiO_4N_2} (O_h)$	3.57	DC,
Ce(OAc) ₂]NO ₃ ·4H ₂ O	$\{CeO_{10}\}$		AF
SIVLIU [9]			$(J = -1.1(4) \text{ cm}^{-1})$
$[(Ni(o-evan-en))_2Ce(NO_3)_2](NO_3)$	${NiO_2N_2} (D_{4h})$	3.53, 3.57	_
XAPVER [10]	$\{CeO_{10}\}$		
<i>Tetranuclear complexes Ni₃Ce core</i>			
[(Ni(o-van-dach)) ₃ Ce(OAc) ₂](OAc)	${NiO_2N_2} (D_{4h})$	3.57, 3.58, 3.60	_
·H ₂ O	$\{CeO_{10}\}$		
OBOGUL [11]			
[(Ni(o-van-en)) ₃ Ce(OAc) ₂](OAc)	${NiO_2N_2} (D_{4h})$	3.55, 3.56, 3.58	_
OBOHEW [11]	$\{CeO_{10}\}$		
$*$ $nn = 1.2$ diaminon range of $n_{1}n_{2} = 2$	the average lies algo have	a/a atheritranilling tu	and $dach = trans 1.2$

Table S1 Ni/Ce heterobimetallic complexes based on bicompartmental Schiff base type ligands derived from *o*-vanillin (or its derivatives) and various diamines, with known crystal structures.

* pn = 1,3-diaminopropane; o-evan = 3-ethoxysalicylaldehyde/o-ethylvanillin; trans-dach = trans-1,2diaminocyclohexane; o-hap = o-hydroxyacetophenone; dach = 1,2-diaminocyclohexane; Br-o-van = 5-bromo-o-vanillin; DC/AC measurements, AF = antiferromagnetic interaction, F = ferromagnetic interaction, NI = no interaction, SMM = single molecule magnet

Structural data

÷	1	2
Empirical formula	C ₁₉ H ₂₂ N ₅ NiCeO ₁₄	C ₂₁ H ₂₈ N ₅ NiCeO ₁₅
Molecular weight	743.24	789.31
Crystal system	Triclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> 2 ₁
Temperature (K)	100(2)	100(2)
Cell parameters		
<i>a</i> (Å)	7.8894(2)	8.8746(10)
<i>b</i> (Å)	11.3473(2)	16.0480(2)
<i>c</i> (Å)	14.4942(2)	10.0771(10)
α (°)	93.723(10)	90
β (°)	92.398(2)	91.844(10)
γ (°)	101.789(2)	90
V (Å ³)	1265.50(4)	1434.43(3)
Ζ	2	2
D _{calc} (Mg.m ⁻³)	1.951	1.827
Abs. coeff. (mm ⁻¹)	15.378	13.635
Crystal colour, form	orange block	green prism
Crystal size (mm)	0.092 x 0.081 x 0.058	0.460 x 0.400 x 0.210
Radiation (Å)	$CuK\alpha (\lambda = 1.54184)$	$CuK\alpha (\lambda = 1.54184)$
θ range (°)	3.060 - 67.490	4.390 - 77.891
	$-9 \le h \le 9$	$-9 \le h \le 11$
Index ranges	$-12 \le k \le 13$	$-20 \le k \le 19$
	$-17 \le l \le 15$	$-11 \le l \le 12$
Refl. coll./ indep.	14635/4559	13419 /5473
Goodness-of-fit (F^2)	1.111	1.028
Final R indices	R1 = 0.0444	R1 = 0.0621
$(I > 2\sigma(I))$	wR2 = 0.1230	wR2 = 0.1577
Pindices (all data)	R1 = 0.0452	R1 = 0.0622
A marces (an data)	wR2 = 0.1237	wR2 = 0.1580
Diff. peak and hole (e.Å-3)	$-1.674 \le \Delta \rho \le 2.502$	$-2.320 \le \Delta \rho \le 3.225$

 Table S2 Crystal data and structure refinements for 1 and 2.

Polyhedron shape Probability for 1		Polyhedron shape		Probability for 2
JASPC-11 5.198		HD-10		7.063
JAPPR-11	10.759	TD-10		4.336
ICPAPR-11	3 204	SDD-10		4.342
ICPDR 11	8 704	JSPC-10		2.951
JULIN-11	0.704	JATDI-10		17.896
EBPY-II	17.375	JMBIC-10		7.600
DPY-11	25.712	JBCSAPR-10		6.265
HP-11	36.421	JBCCU-10		10.473
		PAPR-10		10.318
		PPR-10		9.211
		OBPY-10		16.777
		EPY-10		22.848
		DP-10		35.651
JASPC-11 Augmented	sphenocorona J87	HD-10	Hexadec	ahedron (2:6:2) or (1:4:4:1)
JAPPR-11 Augmented	pentagonal prism J52	TD-10	Tetradec	ahedron (2:6:2)
JCPAPR-11 Capped pent	agonal antiprism J11	SDD-10	Staggere	d Dodecahedron (2:6:2)
JCPPR-11 Capped pent	agonal prism J9	JSPC-10	Sphenoc	orona J87
EBPY-11 Enneagonal	bipyramid	JATDI-10	Augmen	. tridiminished icosahedron J64
DPY-11 Decagonal p	yramid	JMBIC-10	Metabidi	minished icosahedron J62
HP-11 Hendecagon		JBCSAPR-10	Bicappeo	l square antiprism J17
		JBCCU-10	Bicapped	1 cube J15
		PPR-10	Pentagon	al anuprism
		$ORPV_{-10}$	Octagon	al pristil al bipyramid
		EPY-10	Enneago	nal pyramid
		DP-10	Decagon	F.)

Table S3 Results of the *SHAPE* [12] calculations defining the polyhedra shape of Ce(III) ions in complexes 1 and 2.

D-H···A	<i>d</i> (D-H)	d(H···A)	<i>d</i> (D····A)	<(DHA)	
014-H14A…013 ⁱ	0.84(7)	2.06(7)	2.816 (6)	149(7)	
$O14\text{-}H14B\cdots O10^i$	0.84(6)	2.13(7)	2.959 (7)	170(8)	
С3-Н3…Об ^{іі}	0.95	2.59	3.407(7)	144	
C5-H5…O13 ⁱⁱⁱ	0.95	2.50	3.369(7)	153	
C8-H8…O13 ⁱⁱⁱ	1.01(8)	2.48(7)	3.421(7)	154(6)	
C11-H11O8 ^{iv}	0.89(8)	2.59(7)	3.407(7)	154(6)	
С15-Н15…О7 ^v	0.95	2.41	3.298(7)	156	
π-π	Cg···Cg	α	β	γ	Slippage
$Cg1\cdots Cg1^{vi}$	3.676(3)	0	15.1	15.1	0.960
Cg2…Cg2 ^{vii}	3.629(3)	0	20.8	20.8	1.290

Table S4 Potential hydrogen bonding interactions in 1 [Å, °].

Symmetry codes: i: -1 + x, *y*, *z*; ii: 1 - x, -y, -z; iii: 2 - x, 1 - y, -z; iv: 2 - x, 1 - y, 1 - z; v: 1 - x, -y, 1 - z; vi: 1 - x, -y, 1 - z; vii: 1 - x, 1 - y, -z; viii: 1 + x, *y*, *z*. Cg1 is the centre of gravity of the aromatic ring formed by C12-C17 atoms, Cg2 is the centre of gravity of the aromatic ring formed by C2-C7 atoms.

Table S5 Potential hydrogen bonding interactions in 2 [Å, °].

D- H····A	d(D-H)	d(H···A)	d(D····A)	<(DHA)
014-H14B…013 ⁱ	0.87	2.02	2.8194(1)	153
015-H15A…06 ⁱⁱ	0.84	2.02	2.8410(1)	165
O14-H14A…O9	0.87	2.01	2.7166(1)	139
O15-H15B…O12	0.84	2.06	2.7807(1)	143
C21-H21A…O9 ⁱⁱ	0.98	2.52	3.0883(1)	141
C21-H21BO10 ^{iv}	0.98	2.57	3.5203(1)	163

Symmetry codes: i: x, y, -1 + z; ii: 1 + x, y, z; iii: x, y, 1 + z; iv: 1 - x, -1/2 + y, 1 - z.

Compound 1				Compound 2			
T / K	$\chi_{\rm S}$ / cm ³ mol ⁻¹	$\chi_{\rm T}$ / cm ³ mol ⁻¹	α	T / K	$\chi_{\rm S}$ / cm ³ mol ⁻¹	$\chi_{\rm T}$ / cm ³ mol ⁻¹	α
2	2.61.10-3	2.17.10-1	0.27	2	2.06.10-1	4.76·10 ⁻¹	0.12
2.2	3.03.10-3	2.01.10-1	0.24	2.1	2.10.10-1	4.61.10-1	0.11
2.4	3.95.10-3	1.79.10-1	0.19	2.2	2.17.10-1	4.46.10-1	0.07
2.6	4.33.10-3	1.63.10-1	0.14	2.3	2.23.10-1	4.36.10-1	0.07
2.8	5.13.10-3	1.50.10-1	0.09	2.4	2.21.10-1	4.24.10-1	0.07
3	5.31.10-3	1.37.10-1	0.06	2.5	2.24.10-1	4.14·10 ⁻¹	0.06
3.2	5.38.10-3	1.30.10-1	0.06	2.6	2.29.10-1	4.03.10-1	0.05
3.4	5.25.10-3	1.22.10-1	0.04	2.7	2.23.10-1	3.95.10-1	0.05
3.6	5.89.10-3	1.16.10-1	0.03	2.8	2.30.10-1	3.86.10-1	0.05
3.8	4.86.10-3	$1.11 \cdot 10^{-1}$	0.05	2.9	2.29.10-1	3.78.10-1	0.06
4	7.29.10-3	1.04.10-1	0.02	3	2.30.10-1	3.70.10-1	0.05
4.2	5.36.10-3	9.99·10 ⁻²	0.05	3.1	2.32.10-1	3.63.10-1	0.04
4.4	7.05.10-3	9.52.10-2	0.04	3.2	2.30.10-1	3.56.10-1	0.05
4.6	4.98.10-3	9.12.10-2	0.01		1	I	1

 Table S6. Fitting parameters for 1 and 2 from Cole-Cole plots.

Table S7 Energies of the lowest Kramer doublets (KDs) for Ce(III) ion in **1** Ce-Ni calculated using single_aniso module together with g-values, transition magnetic moments quantifying probability for the quantum tunnelling of magnetization (QTM) and deviations from the principal magnetisation axes of the first KD.

KD	$\Delta E (\text{cm}^{-1})$	g_{xx}	g_{yy}	g_{zz}	QTM	$\theta(^{\circ})$
1	0	0.223	1.126	3.333	0.224977068171E+00	-
2	106.97	2.547	1.896	0.507	0.615069853095E+00	12.88
3	324.71	0.035	0.637	3.247	0.381536894005E+00	12.65

w.f.	m_J					
		Real	Imag	Weight (%)		
1	-5/2	-0.74183073820615E-01	-0.91480515575970E+00	84.2		
	-3/2	-0.14133661484248E-01	-0.55436599085241E-01	0.3		
	-1/2	+0.53733779491727E-01	-0.13864707491421E-02	0.3		
	1/2	+0.47487543187659E-01	+0.29120008604358E+00	8.7		
	3/2	-0.52741391074128E-01	-0.16112330368879E+00	2.9		
	5/2	+0.18886834063837E+00	+0.0000000000000E+00	3.6		
	-5/2	-0.15265538573680E-01	-0.18825039999798E+00	3.6		
	-3/2	-0.16485903530430E+00	-0.39545825863510E-01	2.9		
2	-1/2	-0.29408558176856E+00	-0.23795534967872E-01	8.7		
2	1/2	+0.29611708972751E-02	+0.53670037520356E-01	0.3		
	3/2	+0.56397594174211E-01	+0.96066789148342E-02	0.3		
	5/2	-0.91780804153727E+00	+0.0000000000000E+00	84.2		
	-5/2	+0.62723504566254E-01	-0.44755280425052E-01	0.6		
	-3/2	-0.60098141078592E+00	-0.52740925286143E+00	63.9		
2	-1/2	-0.33425018297691E+00	+0.27092546389582E+00	18.5		
5	1/2	+0.20714018235646E-01	-0.23619144843819E+00	5.6		
	3/2	-0.12363228640505E+00	+0.22305120926588E+00	6.5		
	5/2	+0.21988065823111E+00	+0.000000000000E+00	4.8		
	-5/2	+0.17898796305026E+00	-0.12771379159541E+00	4.8		
	-3/2	+0.23019490167215E+00	+0.10975924007131E+00	6.5		
1	-1/2	+0.15404931625927E+00	+0.18023395506330E+00	5.6		
	1/2	+0.42944967876827E+00	+0.26396318861445E-01	18.5		
	3/2	-0.18287649770761E+00	+0.77839280795065E+00	63.9		
	5/2	-0.77053705025405E-01	+0.0000000000000E+00	0.6		
	-5/2	-0.49904738934369E-01	-0.14847094407101E-01	0.3		
	-3/2	+0.61504929572269E-01	-0.39194722112717E+00	15.7		
5	-1/2	+0.70627675674899E+00	+0.28400414426367E+00	57.9		
	1/2	-0.24226806547196E+00	-0.17475672486025E+00	8.9		
	3/2	-0.30433019688423E+00	-0.11656045467349E+00	10.6		
	5/2	-0.25487536653245E+00	+0.0000000000000E+00	6.5		
	-5/2	+0.24429319651674E+00	+0.72679344454168E-01	6.5		
	-3/2	-0.32493267253814E+00	+0.24939273956552E-01	10.6		
6	-1/2	+0.28204233776406E+00	-0.98416706775986E-01	8.9		
	1/2	+0.75793845185729E+00	-0.70813228453789E-01	57.9		
	3/2	+0.52814956281226E-01	-0.39321248804111E+00	15.7		
	5/2	-0.52066486406293E-01	+0.0000000000000000E+00	0.3		

Table S8 Composition of wave functions of the ground J = 5/2 state of Ce(III) ion for complex 1 Ce-Ni obtained from single_aniso calculations.

Table S9 Energies of the lowest KDs for Ce(III) ion in **1** Ce calculated using single_aniso module together with *g*-values, transition magnetic moments quantifying probability for the quantum tunnelling of magnetization (QTM) and deviations from the principal magnetisation axes of the first KD.

KD	$\Delta E (\text{cm}^{-1})$	g_{xx}	g_{yy}	g _{zz}	QTM	$\theta(^{\circ})$
1	0	0.101	0.644	3.844	0.124395289130E+00	-
2	250.35	1.168	1.704	2.529	0.637899861543E+00	11.68
3	620.87	0.013	0.498	3.574	0.755956118440E+00	13.96

w.f.	m_J	C _i		
		Real	Imag	Weight (%)
1	-5/2	+0.14640393950610E+00	-0.17361859277591E+00	5.2
	-3/2	+0.94624995867049E-01	+0.26393102247770E-01	1.0
	-1/2	+0.59934837968488E-01	+0.32989210636616E-01	0.5
	1/2	-0.81847591502576E-02	+0.38923755535843E-01	0.2
	3/2	+0.17881611475358E-01	-0.21559889958117E-01	0.1
	5/2	+0.96525897163323E+00	+0.0000000000000E+00	93.2
	-5/2	+0.62225206001825E+00	-0.73792090076975E+00	93.2
	-3/2	-0.28009438792300E-01	-0.22840667368285E-03	0.1
2	-1/2	-0.35032708192610E-01	-0.18835030821922E-01	0.2
2	1/2	-0.13417277814031E-01	+0.67085389566463E-01	0.5
	3/2	+0.40822804845505E-01	-0.89353145510913E-01	1.0
	5/2	-0.22710686758527E+00	+0.0000000000000E+00	5.2
	-5/2	+0.10449358504959E-01	-0.13105831405708E-01	0.0
	-3/2	-0.83526329916726E+00	-0.29632029755061E+00	78.5
2	-1/2	-0.64077623767020E-01	+0.15365954944560E-01	0.4
5	1/2	-0.16380988959093E+00	-0.35075247385192E+00	15.0
	3/2	-0.18685765206084E+00	-0.12048448480915E+00	4.9
	5/2	+0.10302050728033E+00	+0.0000000000000E+00	1.1
	-5/2	+0.64223990130257E-01	-0.80551252636713E-01	1.1
	-3/2	+0.22282632142760E-01	-0.22121432515187E+00	4.9
1	-1/2	+0.17213102593625E+00	+0.34674470076011E+00	15.0
	1/2	+0.51961184707750E-01	-0.40522705453972E-01	0.4
	3/2	-0.28901984891574E+00	+0.83781741717610E+00	78.5
	5/2	-0.16761619350658E-01	+0.0000000000000E+00	0.0
	-5/2	-0.85978679764792E-02	+0.19027868110689E-01	0.0
	-3/2	+0.63415787371521E-01	-0.77299075938837E-01	1.0
5	-1/2	+0.72055046526156E+00	+0.49613969380034E+00	76.5
5	1/2	-0.26418212462044E+00	+0.66292401212274E-01	7.4
	3/2	-0.60063354141476E-01	-0.37557665862125E+00	14.5
	5/2	-0.73262735959274E-01	+0.0000000000000E+00	0.5
	-5/2	+0.30167484721100E-01	-0.66763398634601E-01	0.5
	-3/2	+0.31752586834825E+00	+0.20938661885781E+00	14.5
6	-1/2	+0.16919401047211E+00	-0.21344850475757E+00	7.4
	1/2	-0.15542385969867E+00	-0.86092449862328E+00	76.5
	3/2	-0.96554458213686E-01	+0.25960467846139E-01	1.0
	5/2	-0.20880208173413E-01	+0.00000000000000E+00	0.0

Table S10 Composition of wave functions of the ground J = 5/2 state of Ce(III) ion for complex 1 Ce obtained from single_aniso calculations.

Table S11 Energies of the lowest KDs for Ce(III) ion in **2** Ce-Zn calculated using single_aniso module together with g-values, transition magnetic moments quantifying probability for the quantum tunnelling of magnetization (QTM) and deviations from the principal magnetisation axes of the first KD.

KD	$\Delta E (\text{cm}^{-1})$	g_x	g_y	g_z	QTM	$ heta(\circ)$
1	0	0.382	0.855	3.648	0.206389976697E+00	-
2	357.80	1.026	1.712	2.580	0.643679151676E+00	5.92
3	486.70	0.324	0.701	3.502	0.446138807446E+00	5.33

w.f.	m_J	c_i				
		Real	Imag	Weight (%)		
1	-5/2	+0.22046303572929E+00	+0.68253315775951E+00	51.4		
	-3/2	+0.56134729276744E-03	-0.10238399207934E+00	1.0		
	-1/2	+0.25406542049287E-01	-0.15369447414623E+00	2.4		
	1/2	+0.62634584079162E-01	-0.14371310786496E+00	2.5		
	3/2	-0.13732227414324E+00	+0.17507982766282E-01	1.9		
	5/2	+0.63800765888632E+00	+0.0000000000000E+00	40.7		
	-5/2	+0.19610460111640E+00	+0.60712169945026E+00	40.7		
	-3/2	+0.25548365506701E-01	+0.13605593472468E+00	1.9		
2	-1/2	-0.11750394437307E+00	+0.10377558222406E+00	2.5		
2	1/2	+0.13844490572140E+00	-0.71417727529022E-01	2.4		
	3/2	-0.97255040881322E-01	+0.32003969631008E-01	1.0		
	5/2	-0.71725550673381E+00	+0.0000000000000E+00	51.4		
	-5/2	-0.56495394753739E-01	-0.12596174782859E+00	1.9		
	-3/2	-0.33478800618921E+00	+0.45563312668531E+00	32.0		
2	-1/2	+0.20465511169838E+00	+0.31545484440328E-01	4.3		
5	1/2	-0.11828542989138E+00	-0.52446588937647E+00	28.9		
	3/2	-0.52544789797018E+00	-0.23029482199939E+00	32.9		
	5/2	+0.13835112450418E-01	+0.0000000000000E+00	0.0		
	-5/2	-0.56618187435197E-02	-0.12623555576183E-01	0.0		
	-3/2	-0.42515957334788E+00	-0.38518895824763E+00	32.9		
1	-1/2	+0.52694437244812E+00	-0.10670305775315E+00	28.9		
	1/2	+0.11253515662782E+00	+0.17382367790692E+00	4.3		
	3/2	-0.27872562772093E+00	+0.49193147839098E+00	32.0		
	5/2	-0.13805104722734E+00	+0.0000000000000E+00	1.9		
	-5/2	-0.19405609716046E+00	+0.87201880667067E-01	4.5		
	-3/2	-0.93701672688782E-01	-0.45826761118387E+00	21.9		
5	-1/2	-0.84035507524611E-01	+0.33557963764055E-01	0.8		
5	1/2	-0.48443845347757E+00	-0.61347575695997E+00	61.1		
	3/2	+0.29713229540975E+00	+0.12025267269595E+00	10.3		
	5/2	-0.11823420372248E+00	+0.0000000000000E+00	1.4		
	-5/2	+0.10784595508330E+00	-0.48462120850540E-01	1.4		
	-3/2	+0.22173631777259E+00	-0.23147637799704E+00	10.3		
6	-1/2	+0.19042197484227E+00	-0.75813757943241E+00	61.1		
	1/2	-0.90406831208341E-01	+0.38351717762215E-02	0.8		
	3/2	-0.10236693750976E+00	-0.45641014104875E+00	21.9		
	5/2	-0.21274852844486E+00	+0.0000000000000E+00	4.5		

Table S12 Composition of wave functions of the ground J = 5/2 state of Ce(III) ion for complex **2** Ce-Zn obtained from single_aniso calculations.

Root	Mult	$\Delta E (\mathrm{cm}^{-1})$
0	3	0
1	3	9228.2
2	3	9633.7
3	3	13891.8
0	1	14590.6
1	1	16593.1

4	3	17113.7
5	3	19414.1
6	3	19532.4
2	1	24945.9
3	1	25399.4
7	3	29360.2
4	1	29508.8
6	1	30096.8
5	1	30588.8
8	3	31435.1
9	3	32093.8
7	1	35093.0
8	1	35422.9
9	1	40915.0
10	1	41109.2
11	1	41805.2
12	1	42156.5
13	1	42562.0
14	1	67532.4

Table S14 Calculated (C	CAS(8,5)-NEVPT2) contr	ibutions t	o the SH parame	ters in	2 La-Ni.
	3.6.1.	\mathbf{D} (1)		п (1)

Root	Mult	$D (\text{cm}^{-1})$	$E (\text{cm}^{-1})$
1	3	22.335	22.577
2	3	21.408	-21.400
3	3	-30.140	0.174
4	3	0.007	0.002
5	3	0.190	-0.190
6	3	0.219	0.227
7	3	0.004	-0.004
8	3	0.022	-0.021
9	3	0.026	0.027
0	1	-0.015	-0.012
1	1	-0.001	0.001
2	1	-7.318	-7.359
3	1	-7.179	7.176
4	1	11.910	-0.020
5	1	-0.001	-0.001
6	1	-0.002	-0.002
7	1	-0.120	0.049
8	1	-0.091	-0.029
9	1	-0.107	0.122
10	1	-0.017	0.074
11	1	-0.423	0.419
12	1	-0.009	-0.412
13	1	1.030	-0.187
14	1	-0.000	-0.000

Figure S1 Comparison of the IR spectra of two Ni(II)/Ce(III) complexes: $[Ni(o-van-dap)Ce(H_2O)(NO_3)_3]$ (1) and $[Ni(H_2O)_2(o-van-dmdap)Ce(NO_3)_3]$ (2).

Figure S2 Comparison of the IR spectra of the Schiff base ligands.

Figure S3 LeBail refinement of the measured powder diffraction pattern of complex **1**. Yellow line represents the refined pattern, black line represents the measured powder diffraction pattern, while the blue line shows the difference between the observed and calculated intensities. The refined cell lengths for triclinic *P*-1 space group are a = 7.9163(11), b = 11.5406(11), c = 14.5707(13) Å and V = 1292.1(2) Å³, the values from appropriate low-temperature (100 K) CIF file are: a = 7.8894(2), b = 11.3473(2), c = 14.4942(2) Å and V = 1265.50(4) Å³. We note that the experimental powder diffraction data were collected at room temperature. The resulting R values are R(p) = 0.0176, R(wp) = 0.0235 and goodness of fit is 3.31.

Figure S4 LeBail refinement of the measured powder diffraction pattern of complex **2**. Green line represents the refined pattern, black line represents the measured powder diffraction pattern, while the blue line shows the difference between the observed and calculated intensities. The refined cell lengths for monoclinic $P2_1$ space group are a = 8.9526 (12), b = 16.1888(10), c = 10.1005 (11) Å and V = 1463.6(2) Å³, the values from appropriate low-temperature (100 K) CIF file are: a = 8.8746(10), b = 16.1888(10), c = 10.1005 (11) Å

16.048(2), c = 10.0771(10) Å and V = 1434.43(3) Å³. We note that the experimental powder diffraction data were collected at room temperature. The resulting R values are R(p) = 0.0656, R(wp) = 0.0308 and goodness of fit is 4.41.

Figure S5 View on the O-H···O and weak C-H···O type hydrogen bonds (orange dashed lines) in 1. Only atoms relevant for hydrogen bonding interactions are shown. Symmetry codes: i: -1 + x, y, z; ii: 1 - x, -y, -z; iii: 2 - x, 1 - y, -z; iv: 2 - x, 1 - y, 1 - z; v: 1 - x, -y, 1 - z; vi: 1 - x, 1 - y, 1 - z; vii: 1 - x, 1 - y, z; vii: 1 - x, z; vii: 1 - x; vii: 1 -

Figure S6 View on the O-H···O type intramolecular and intermolecular hydrogen bonds (orange dashed lines) in **1**. Only atoms relevant for hydrogen bonding interactions are shown. Symmetry codes: i: x, y, -1 + z; ii: 1 + x, y, z; iii: x, y, 1 + z; iv: 1 - x, -1/2 + y, 1 - z; v: 1 + x, y, -1 + z; vi: -1 + x, y, z; vii: -1 + x, y, 1 + z.

Figure S7 Field dependent magnetization curves at different temperatures for 1.

Figure S8 Field dependent magnetization curves at different temperatures for 2.

Figure S9 Cole-Cole plots for 1 and 2. The experimental data are denoted by circles; solid lines represent the best fit to the Debye model.

Figure S10 View on the disordered 1,2-diaminopropane fragment in the complex **1** (C9A/C9B, C10A/C10B a C19A/C19B) with occupation factors in 0.38 : 0.62 *ratio*. The thermal ellipsoids for disordered C atoms and appropriate N atoms of the fragment, Ni and Ce central atoms were drawn with 50 % probability level. The rest of the molecule is depicted in wire and stick model. Hydrogen atoms are omitted for clarity.

Figure S11 Truncated molecular structure of the complex 1 (1 Ce = $[CeL_2(NO_3)_3H_2O]^{2-}$).

Figure S12 Orientation of the principal axes of the *D*-tensor in structure 2 La-Ni.

References

- A. Vráblová, M. Tomás, L. R. Falvello, Ľ. Dlháň, J. Titiš, J. Černák, R. Boča, *Dalton Trans.*, 2019, 48, 13943. <u>https://doi.org/10.1039/c9dt02122a</u>.
- [2] T. D. Pasatoiu, J.-P. Sutter, A. M. Madalan, F. Z. Ch. Fellah, C. Duhayon, M. Andruh, *Inorg. Chem.*, 2011, **50**, 5890. <u>https://doi.org/10.1021/ic2004276</u>.
- [3] A. Jana, S. Majumder, L. Carrella, M. Nayak, T. Weyhermueller, S. Dutta, D. Schollmeyer, E. Rentschler, R. Koner, S. Mohanta, *Inorg. Chem.*, 2010, 49, 9012. https://doi.org/10.1021/ic101445n.
- [4] J. S. Elias, M. Risch, L. Giordano, A. N. Mansour, Y. Shao-Horn, J. Am. Chem. Soc., 2014, 136, 17193. <u>https://doi.org/10.1021/ja509214d</u>.
- [5] H.-R. Wen, S.-J. Liu, X.-R. Xie, J. Bao, C.-M. Liu, J.-L. Chen, *Inorg. Chim. Acta*, 2015, 435, 274. <u>http://dx.doi.org/10.1016/j.ica.2015.07.009</u>.
- [6] R. Koner, H.-H. Lin, H.-H. Wei, S. Mohanta, *Inorg. Chem.*, 2005, 44, 3524. <u>https://doi.org/10.1021/ic048196h</u>.
- S. A. Güngör, M. Kose, J. Mol. Struct., 2017, 1150, 274.
 https://doi.org/10.1016/j.molstruc.2017.08.091.
- [8] S. Ghosh, A. Ghosh, *Inorg. Chim. Acta*, 2016, 442, 64. https://doi.org/10.1016/j.ica.2015.11.029.
- B. Cristóvao, J. Klak, R. Pelka, B. Miroslaw, Z. Hnatejko, *Polyhedron*, 2014, 68, 180. http://dx.doi.org/10.1016/j.poly.2013.10.019.
- [10] Y. Sui, R.-H. Hu, D.-S. Liu, Q. Wu, *Inorg. Chem. Commun.*, 2011, 14, 396. https://doi.org/10.1016/j.inoche.2010.12.010.
- H. Nagae, K. Sakamoto, S. Fujiwara, T. Schindler, Y. Kon, K. Sato, J. Okuda, K.
 Mashima, *Chem. Commun.*, 2021, 57, 11169. <u>https://doi.org/10.1039/D1CC04540G</u>.
- [12] M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, SHAPE Program, version 2.1, Universitat de Barcelona (2013).