Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Phosphorus-Doped Cobalt sulphide Nanocubes as a Efficient Electrocatalyst for Hydrogen evolution Reaction

P. Krishnamurthy, T. Maiyalagan*

Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603 203, Tamil Nadu, India *e-mail address- <u>maiyalat@srmist.edu.in</u>

Fig. S1 SEM image of CoS₂.

Fig. S2 SEM image of P doped CoS₂-1.

Fig. S3 SEM image of P doped CoS₂-3

Element	Net Counts	Weight %	Atom %	Formula
Р	169	0.20	0.26	Р
S	47683	53.97	68.22	S
Со	10510	45.83	31.52	Со
Total		100.00	100.00	

Fig. S4 EDX spectrum of P doped CoS₂-1

Element	Net Counts	Weight %	Atom %	Formula
Р	267	0.33	0.44	Р
S	43001	49.30	63.99	S
Со	11692	50.37	35.57	Со
Total		100.00	100.00	

Fig. S5 EDX spectrum of P doped CoS₂-2

Element	Net Counts	Weight %	Atom %	Formula
Р	766	0.65	0.86	Р
S	62834	49.81	64.33	S
Со	16609	49.54	34.81	Со
Total		100.00	100.00	

Fig. S6 EDX spectrum of P doped CoS_2 -3

Table S1 The electrocatalytic HER performance of synthesized P-doped CoS_2 -2 with otherrecently reported cobalt sulphide-based electrocatalysts in 1M KOH electrolyte.

Catalyst	Overpotential (mV) at	Tafel slope	Reference
	J=10mA cm ²	(mV/dec)	
P doped CoS ₂ /NF	138	96.2	This work
Mo-CoS ₂ /NC	158	123	40
CoS ₂ @NHCs-800	118	74	41
Sn-CoS ₂ /CC	132	179.9	42
CoS2@N-ASC@NF	165.6	67.8	43
Co/CoS2@NC	188	-	44
CoS ₂ NTA/CC	193	88	45
CoS ₂ @WS ₂ /NF	127	177	46
CoS _{1.25} Se _{0.75} @NC	134	86	47
CoS _x /Ni ₃ S ₂ @NF	201	113.13	48

Fig. S7 Polarization curves of P doped CoS_2 -2 initially and after 1000 cycles CV with a scan rate of 100 mV s⁻¹ in 1M KOH.

Fig. S8 XRD analysis of P doped CoS_2 -2 initially and after 1000 cycles.

Fig. S9 TEM image of post HER studies for P doped CoS_2 -2

Section S1. Calculation of the Electrochemical Active Surface Area (ECSA)

The prepared electrocatalysts double layer capacitance (C_{dl}) values were determined from the cyclic voltammetry (CV) curves recorded (non-faradaic region) at different scan rates. The ECSA of the prepared catalysts was calculated according to equation (1).

The catalyst's C_{dl} values were derived from the slope of linearly fitted curves by plotting capacitive current density versus scan rate. Where Cs - is the specific capacitance (0.040 mF cm⁻²) and C_{dl} - is the double-layer capacitance [1].

Section S2. Calculate of the TOF of the electrocatalysts, Equations (2) and (3) were used.

Where n is the number of moles of the active sites on the electrode, m_{mass} - is mass loading of active materials and M - is molar mass of active materials, respectively. J is the current density at overpotential of 250 mV in A cm⁻², and F is the Faraday constant (96485 C mol⁻¹), **[2-4]**.

Table S2. Represents the intrinsic catalytic activity of the electrochemical HER performance of P doped CoS_2 -2, P doped CoS_2 -3, P doped CoS_2 -1 and bare CoS_2 electrocatalysts in 1M KOH electrolyte.

Catalyst	Cdl (mF cm ⁻²)	ECSA (cm²)	TOF @η=250 mV (S ⁻¹)
P doped CoS ₂ -2	5.44	136	2.43
P doped CoS ₂ -3	3.62	90.5	1.88

P doped CoS ₂ -1	3.47	86.75	1.18
Bare CoS ₂	3.26	81.5	1.03

Reference

- Zhou, Z.; Wei, L., Wang, Y., Karahan, H., Chen, Z., Lei, Y., Chen, X., Zhai, S., Liao, X., Chen, Y. Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. *J. Mater. Chem. A* 2017, 5, 2039020397.
- Chen, J., Zhao, G., Chen, Y., Rui, K., Mao, H., Dou, S. X., & Sun, W. (2019). Iron-doped nickel molybdate with enhanced oxygen evolution kinetics. *Chemistry–A European Journal*, 25(1), 280-284.
- 3. Babar, P., Patil, K., Mahmood, J., Kim, S. J., Kim, J. H., & Yavuz, C. T. (2022). Lowoverpotential overall water splitting by a cooperative interface of cobalt-iron hydroxide and iron oxyhydroxide. *Cell Reports Physical Science*, 3(2).
- Liu, H., Yan, Z., Chen, X., Li, J., Zhang, L., Liu, F., & Cheng, F. (2020). Electrodeposition of Pt-decorated Ni(OH)₂/CeO₂ hybrid as superior bifunctional electrocatalyst for water splitting. *Research*.