Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Plant-mediated Biosynthesized Au/CuO Catalysts for Efficient

Glycerol Oxidation to 1,3-Dihydroxyacetone: Effect of Biomass

Component on Catalytic Activity

Li Cui^{a,b,c}, Fei Wang^{a,b,c}, Xiaoli Zhang^{a,b,c}, Yuewen Chen^{a,b,c}, Hai Liu^{a,b,c}, Yihu Ke^{a,b,c}, Yimin Wang^{a,b,c, *}, Xiya Zhang^{a,b,c, *}

^aSchool of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China

^bKey Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu

University, Yinchuan 750021, PR China

^cNingxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan

750021, PR China

E-mail: 2021730@nmu.edu.cn (Yimin wang)

E-mail: 303652414@qq.com (Xiya Zhang).

Table of contents

Figure S1. Device diagram for separating lilac extract by chromatographic column
Figure S2. The mass of the separated products obtained by column chromatography
Figure S3. HPLC chromatograms of Sloading 2
Figure S4. HPLC chromatograms of S34
Figure S5. HPLC chromatograms of S64
Figure S6. XRD patterns of Au NPs prepared by reaction of extracts of Lilac leaves with different isolated
products for 4 h, (a) Lilac leaf extract-Au, (b)Sloading2-Au, (c)S3-Au, (d)S6-Au4
Figure S8. N_2 adsorption and desorption curves of Au/CuO prepared with different concentrations of S35
Figure S9. Pore size distribution of Au/CuO prepared with different concentrations of S3
Figure S10. XRD patterns of Au/CuO catalysts with different loads prepared by the isolated product S3: a =
CuO, b = 0.5%-Au/CuO, c = 1%-Au/CuO, d = 2%-Au/CuO, e = 3%-Au/CuO6
Table S1. BET characterization results of lilac leaf extract and different separation products -Au/CuO
catalyst
Table S2. BET characterization results of catalysts prepared with different concentrations of S3
Table S3. BET characterization results of four different loads of S3-Au/CuO catalysts. 7
Table S4. BET characterization results of catalysts prepared at different calcination temperatures for the
separated product S37
Table S5. ICP analysis of Au/CuO catalysts prepared from different plant isolates

Figure S1. Device diagram for separating lilac extract by chromatographic column.

Figure S2. The mass of the separated products obtained by column chromatography.

Figure S3. HPLC chromatograms of Sloading 2.

Figure S4. HPLC chromatograms of S3.

Figure S5. HPLC chromatograms of S6.

Figure S6. XRD patterns of Au NPs prepared by reaction of extracts of Lilac leaves with different isolated products for 4 h, (a) Lilac leaf extract–Au, (b)Sloading2-Au, (c)S3-Au, (d)S6-Au.

Figure S7. UV-Vis spectra of Au NPs prepared by reaction of extracts of *SoL* leaf syringae with different isolated products for 2 h.

Figure S8. N₂ adsorption and desorption curves of Au/CuO prepared with different concentrations of S3.

Figure S9. Pore size distribution of Au/CuO prepared with different concentrations of S3.

Figure S10. XRD patterns of Au/CuO catalysts with different loads prepared by the isolated product S3: a = CuO, b = 0.5%-Au/CuO, c = 1%-Au/CuO, d = 2%-Au/CuO, e = 3%-Au/CuO.

 Table S1. BET characterization results of lilac leaf extract and different separation products -Au/CuO catalyst.

Catalysts	$S_{BET} \left(m^2 g^{-1}\right)$	$V_P (cm^3g^{-1})$	D _p (nm)
CuO	32.66	0.25	30.96
SoL-Au/CuO	26.73	0.17	25.75
Sloading2-Au/CuO	24.70	0.18	29.00
S3-Au/CuO	31.34	0.24	30.95
S6-Au/CuO	29.70	0.11	14.91

Catalysts	$S_{BET}\left(m^2g^{\text{-}1}\right)$	$V_P (cm^3g^{-1})$	D _p (nm)
CuO	32.66	0.25	30.96
S3 (0.2 mg/mL)-Au/CuO	23.61	0.18	30.96
S3 (0.5 mg/mL)-Au/CuO	28.14	0.19	27.53
S3 (1.0 mg/mL)-Au/CuO	29.18	0.20	28.09
S3 (2.0 mg/mL)-Au/CuO	31.34	0.24	30.95
S3 (4.0 mg/mL)-Au/CuO	30.22	23.27	30.80

Table S2. BET characterization results of catalysts prepared with different concentrations of S3.

Table S3. BET characterization results of four different loads of S3-Au/CuO catalysts.

Catalysts	$S_{BET}\left(m^2g^{1}\right)$	$V_{P}(cm^{3}g^{-1})$	D _p (nm)
CuO	32.66	0.25	30.96
0.5% Au/CuO	31.88	0.13	15.86
1% Au/CuO	31.34	0.24	30.95
2% Au/CuO	23.32	0.17	29.57
3% Au/CuO	17.42	0.13	30.81

Table S4. BET characterization results of catalysts prepared at different calcination temperatures for the separated product S3.

Catalysts	$S_{BET} \left(m^2 g^{-1}\right)$	$V_P (cm^3g^{-1})$	D _p (nm)
Au/CuO (0°C)	30.14	0.22	29.34
Au/CuO (200°C)	31.06	0.25	31.63
Au/CuO (350°C)	31.34	0.24	30.95
Au/CuO (500°C)	18.12	0.13	29.77
Au/CuO (650°C)	10.70	0.09	34.99

Table S5. ICP analysis of Au/CuO catalysts prepared from different plant isolates.

Catalysts	Au/%	Cu/%
Sloading S2-Au/CuO	1.04	78.52
S3-Au/CuO	0.96	78.27
S6-Au/CuO	1.02	72.37