Supporting Information

Exsolution of Fe, Co, and Ni supported catalysts from LaBO₃ (B = Fe, Co, Ni) perovskites for ammonia synthesis

Nan Zhou^{1, #}, Fanyi Kong,^{1, #} Ya Tang^{*, 2}

¹ Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

² Department of Chemistry, School of Science, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai, China.

corresponding author: Ya Tang, 2

[#] Authors contributed equally.

Figure S1. Comparison of X-ray diffraction patterns after ammonia synthesis reaction. (a) LaNiO₃ before and after reaction (b) In situ XRD at 30 to 450 °C under a hydrogen-nitrogen mixture, N_2/H_2 = 1:3 (c) LaFeO₃ before and after reaction (d) LaCoO₃ before and after reaction.

Figure S2. (a) TG-DSC curves of LaNiO₃ in hydrogen-nitrogen mixtures(H₂ 75% / N₂ 25%) (b) XRD before and after TG reaction.

Figure S3. (a)-(c). R-space environment changes of LaBO₃(B= Ni/Fe/Co) collected before and after the ammonia synthesis reaction at Ni K-edge , Fe K-edge, Co K-edge , respectively. Among them, CoO and Fe₃O₄ are commercially available pharmaceuticals.

Figure S4. Comparison of ammonia synthesis performance of 15wt% Ni/La₂O₃ synthesized by impregnation method and LaNiO₃ in situ formation catalysts.

Figure S5. TEM image and particle size analysis based on the image. (a)LaNiO₃(reaction temperature: 500 °C). (b) 15wt%Ni/La₂O₃ (reaction temperature:500 °C).