Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information

Enhancement of electrocatalytic CO₂ performance by different

components of Cu-based bimetallic MOFs

Jvwei Liu^a, Qiang Zhang^{a,b*}, Jianlin Wang^a, Conglin Chen^a, Shenjie Zhang^a, Fang

Guo^a, Junqiang Xu^a

- ^a School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
- ^b National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

*Corresponding authors: School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China.

E-mail addresses: zqiang@cqut.edu.cn (Qiang Zhang)

Mailing address for correspondence:

Qiang Zhang (A\Prof.)

School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China

E-mail: zqiang@cqut.edu.cn

Figure S1. XRD patterns of CuCe-BTC catalysts before and after O₂-DBD treatment

Figure S2. XRD patterns of CuNi-BTC catalysts before and after O₂-DBD treatment

Figure S3. XRD patterns of CuCo-BTC catalysts before and after O₂-DBD treatment

Figure S4. XRD patterns of CuMg-BTC catalysts before and after O₂-DBD treatment

Figure S5. XRD patterns of CuBi-BTC catalysts before and after O₂-DBD treatment

Figure S6. XRD patterns of CuZn-BTC catalysts before and after O2-DBD treatment

Figure S7. XRD patterns of CuFe-BTC catalysts before and after O₂-DBD treatment

Figure S8. XRD patterns of CuMn-BTC catalysts before and after O₂-DBD treatment

Figure S9. XRD patterns of CuAg-BTC catalysts before and after O₂-DBD treatment

Figure S10. (a)-(b) Cyclic voltammetry curves (CV) of different catalysts after O₂-DBD treatment.

Figure S11. (a)-(b) Stability test (it) of different catalysts after O₂-DBD treatment. BD treatment.

C - t - 1t -	0 4 4 1		FF (0/)	G(1 '1')		Defe
Catalysts	Uneset potential	J_{ethanol} (mA/cm ²)	$FE_{ethanol}(\%)$	Stability	$C_{dl}(mF/c)$	Keis.
	(V vs.RHE)			(h)	m ²)	
CuIn-BTC-	-0.2	36	87			This work
DBD						
Cu/BNC-1	-1	20.4	58.64	24	45	S1
V _{Se} -Cu _{2-x} Se	-0.8	10.96	68.1	6	7.88	S2
Cu ⁺ /hf-Cu	-0.8	0.23	43	6		S3 ⁰
LNCCs	-1	8.66	82.5	10	2.81	S4
dCu2O/Ag2.3%	-0.87	326.4	40.8	12		S5
SnS ₂ /Sn ₁ -O ₃ G	-0.7	17.8	82.5	100		S6
CuAg-0.75%	-0.71	214	20	60		S7
C						
PGA-2	-0.8	4.7	48.7	70	28	S8
					-	
Ασ-C11 5 %	-0.3	320	52.6	60	6.27	59
	0.0	520	02.0		0.27	
Ku ava CuaSe	-0.6	35.8	70.3	130	37.1	\$10
K11.2% ⁻ Cu25C	-0.0	55.0	70.5	150	57.1	510
CuOr@C	1	164	15	56	10.02	<u>S11</u>
CuOx@C	-1	104	45	50	10.05	511
	0.4	21	22.1			G1 0
Cu-N-G	-0.4	21	33.1			812
Cu/CuNC	-0.2	1	55	6		S13
Cu ₂ -CuN ₃	-0.7	14.4	51	10		S14
Cu _{1.22} V _{0.19} Se	-0.4	21.3	70.5	138	41.4	S15
Cu/Bi	-0.21	20	28.3	5		S16
H-Ru10	-1	20	47.2	1		S17
-						

 Table S1. Comparison of the performance of Cu-based and Cu-based MOF-derived

catalysts for the electrocatalytic reduction of CO_2 to ethanol.

- S1. B. Shao, D. Huang, R. K. Huang, X. L. He, Y. Luo, Y. L. Xiang, L. B. Jiang, M. Dong, S. Li, Z. Zhang and J. Huang, Metal-Organic Framework Supported Low-Nuclearity Cluster Catalysts for Highly Selective Carbon Dioxide Electroreduction to Ethanol, *Angew. Chem., Int. Ed.*, 2024, DOI: 10.1002/anie.202409270.
- S2. Y. Zang, T. Liu, P. Wei, H. Li, Q. Wang, G. Wang and X. Bao, Selective CO₂
 Electroreduction to Ethanol over a Carbon-Coated CuO_x Catalyst, *Angew*.
 Chem., Int. Ed., 2022, 61, e202209629.
- S3. Y. Zhao, Q. Yuan, R. Xu, C. Zhang, K. Sun, A. Wang, A. Zhang, Z. Wang, J. Jiang and M. Fan, Boosting electrochemical conversion of CO₂ to ethanol through the confinement of pyridinic N-B layer on copper nanoparticles, *Appl. Catal.*, B, 2024, 355.124168
- S4. H. Wang, X. Bi, Y. Yan, Y. Zhao, Z. Yang, H. Ning and M. Wu, Efficient Electrocatalytic Reduction of CO₂ to Ethanol Enhanced by Spacing Effect of Cu-Cu in Cu_{2-x}Se Nanosheets, *Adv. Funct. Mater.*, 2023, 33.2214946
- S5. J. Y. Kim, G. Kim, H. Won, I. Gereige, W. B. Jung and H. T. Jung, Synergistic
 Effect of Cu₂O Mesh Pattern on High-Facet Cu Surface for Selective CO₂
 Electroreduction to Ethanol, *Adv. Mater.*, 2022, 34, e2106028.
- S6. J. Ding, H. Bin Yang, X.-L. Ma, S. Liu, W. Liu, Q. Mao, Y. Huang, J. Li, T. Zhang and B. Liu, A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity, *Nat. Energy*, 2023, 8, 1386-1394.

- S7. F. Yang, C. Liang, H. Yu, Z. Zeng, Y. M. Lam, S. Deng and J. Wang, Phosphorus-Doped Graphene Aerogel as Self-Supported Electrocatalyst for CO₂ -to-Ethanol Conversion, *Adv. Sci.*, 2022, 9, e2202006.
- S8. W. Sun, P. Wang, Y. Jiang, Z. Jiang, R. Long, Z. Chen, P. Song, T. Sheng, Z. Wu and Y. Xiong, V-Doped Cu₂Se Hierarchical Nanotubes Enabling Flow-Cell CO₂ Electroreduction to Ethanol with High Efficiency and Selectivity, *Adv. Mater.*, 2022, 34, e2207691.
- S9. P. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng, T. Cheng, K. Davey, X. Huang and S. Z. Qiao, Boosting electrocatalytic CO₂-to-ethanol production via asymmetric C-C coupling, *Nat. Commun*, 2022, **13**, 3754.
- S10. H. Tang, Y. Liu, Y. Zhou, Y. Qian and B.-L. Lin, Boosting the Electroreduction of CO₂ to Ethanol via the Synergistic Effect of Cu-Ag Bimetallic Catalysts, ACS Appl. Energy Mater., 2022, 5, 14045-14052.
- S11. Z. Cai, N. Cao, F. Zhang, X. Lv, K. Wang, Y. He, Y. Shi, H. Bin Wu and P. Xie, Hierarchical Ag-Cu interfaces promote C-C coupling in tandem CO₂ electroreduction, *Appl. Catal.*, *B*, 2023, **325**.122310
- S12. L. Ding, N. Zhu, Y. Hu, Z. Chen, P. Song, T. Sheng, Z. Wu and Y. Xiong, Over
 70 % Faradaic Efficiency for CO₂ Electroreduction to Ethanol Enabled by
 Potassium Dopant-Tuned Interaction between Copper Sites and Intermediates, *Angew. Chem., Int. Ed.*, 2022, 61, e202209268.
- S13. D. Zang, X. J. Gao, L. Li, Y. Wei and H. Wang, Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO₂ reduction

with enhanced selectivity towards ethanol, Nano Res., 2022, 15, 8872-8879.

- S14. Y. Yang, J. Fu, Y. Ouyang, T. Tang, Y. Zhang, L. R. Zheng, Q. H. Zhang, X. Z. Liu, J. Wang and J. S. Hu, In-situ constructed Cu/CuNC interfaces for low-overpotential reduction of CO₂ to ethanol, *Natl. Sci. Rev.*, 2023, 10, nwac248.
- S15. X. Su, Z. Jiang, J. Zhou, H. Liu, D. Zhou, H. Shang, X. Ni, Z. Peng, F. Yang, W. Chen, Z. Qi, D. Wang and Y. Wang, Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu₂-CuN₃ clusters for CO₂ reduction to ethanol, *Nat. Commun*, 2022, **13**, 1322.
- S16. J. Albo, M. Perfecto-Irigaray, G. Beobide and A. Irabien, Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO₂ to alcohols, *J. CO₂ Util.*, 2019, **33**, 157-165.
- S17. M. Perfecto-Irigaray, J. Albo, G. Beobide, O. Castillo, A. Irabien and S. Perez-Yanez, Synthesis of heterometallic metal-organic frameworks and their performance as electrocatalyst for CO₂ reduction, *RSC Adv.*, 2018, 8, 21092-21099.