Supplementary information Cobalt phosphate nanorod bundles for the efficient supercapacitor and oxygen evolution reaction applications and its temperature dependence Sushama M. Nikam¹, Suhas H. Sutar¹, Shubham D. Jituri, Akbar I. Inamdar^{2*}, Sarfraj H. Mujawar^{1*} ¹ Department of Physics, Yashvantrao Chavan Institute of Science, Satara, Maharashtra, 415001, India. ² Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul, 04620, Republic of Korea. **Keywords:** cobalt phosphate; supercapacitor; electrocatalysis; energy generation and storage; oxygen evolution reaction ## *Corresponding Author E-mail: sarfrajmujawar695@gmail.com, akbarphysics2002@gmail.com Table S1 Mass loading of cobalt oxide and cobalt phosphate on nickel foam. | Name of | Co ₁₅₀ | Co ₂₅₀ | Co ₃₅₀ | Co ₄₅₀ | Cp ₁₅₀ | Cp ₂₅₀ | Cp ₃₅₀ | Cp ₄₅₀ | |--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | Sample | | | | | | | | | | Mass | 2.9 | 2.9 | 2.9 | 2.9 | 3.1 | 3.1 | 3.1 | 3.1 | | loaded (mg | | | | | | | | | | cm ⁻²) | | | | | | | | | Figure S1 Raman spectra of the samples (a) Co_{150} and (b) Cp_{150} **Figure S2.** (a) EIS plot of Cobalt oxide at different annealing temperatures, (b) electrochemical circuit fitting of Co_{150} electrode, (c) EIS plot of cobalt phosphate at different annealing temperatures, (d) electrochemical circuit fitting of Cp_{150} electrode, (e) Comparison of resistance values of Co_{150} and Cp_{150} . Figure S3. Capacitance retention and Coulombic efficiency for different a number of cycles. Figure S4. Comparative LSV polarisation curve of the Co_{60} and Cp_{60} electrode and Ni Foam **Figure S5.** LSV curves of the Co_{150} and Cp_{150} sample in 1 M KOH electrolyte before and after stability measurements. **Figure S6.** (a) and (b) ECSA plot of Cobalt oxide and Cobalt phosphate at different annealing temperatures respectively. **Figure S7.** (a) CV plot of Cp_{60} and Cp_{150} ; (b) GCD plot of Cp_{60} and Cp_{150} ; and (c) LSV plot of Cp_{60} and Cp_{150} . To know the supercapacitor and OER performances of the samples grown at temperature lower than 150°C, we synthesized additional sample at 60°C and compared. The comparative electrochemical performances of these samples are shown in in **Fig. S7**. The CV plot of Cp₆₀ and Cp₁₅₀ is demonstrated in **Fig. S7 (a)**, which depicts that the area under the CV curve of Cp₁₅₀ is higher than Cp₆₀. The specific capacitance (**Fig. S7 (b)**) of Cp₆₀ and Cp₁₅₀ are found to be 895 Fg⁻¹ (402 Cg⁻¹) and 1512 Fg⁻¹ (681 Cg⁻¹) at 5 mA cm⁻² respectively. Moreover the **Fig. S7 (c)** demonstrates the LSV polarization curve of Cp₆₀ and Cp₁₅₀ with the overpotential of 389 mV for Cp₆₀ and 359 mV for Cp₁₅₀ at 30 mA cm⁻² current density. Hence the electrochemical performance of Cp₁₅₀ is more excellent than Cp₆₀.