Amino functional SBA-15 assisted NU-1000 for rapid and efficient

adsorption of tetracycline antibiotics

Jiawei Yang, Junfei Wu, Lina Gao, Long-Hui Duan and Jing Wang*

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China

E-mail: wjwyj82@gxu.edu.cn (J. Wang)

Part 1. Experimental section

1.1 Chemicals

SBA-15 was purchased from Nanjing XFNANO Materials Technology Co. (China), 1,3,6,8-Tetra(4-carboxyphenyl) pyrene (H₄TBAPy) and zirconium (IV) oxychloride octahydrate (ZrOCl₂·8H₂O) were purchased from Aladdin Industrial Co. Ltd. Tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC), aclacinomycin (ACL), penicillin (PEG), streptomycin sulfate (STR), sulfachlorpyridazine (SCP), sulfamethoxypyridazine (SMP), sulfamerazine (SMR) were purchased from Sigma-Aldrich. All of the other chemicals were purchased from commercial suppliers and utilized without purifying.

1.2 Characterizations

Scanning electron microscopy (SEM) images were taken by Cezch Republic Tescan mira. Transmission electron microscopy (TEM) was measured by Japan JEM-2100F. Powder X-ray diffraction (PXRD) and small-angle X-ray diffraction (SXRD) were scanned on a Japan Smartlab 9X Advance X-ray diffractometer. Thermogravimetric analysis (TGA) was carried out by America Perkin-Elmer STA8000. The N₂ sorption isotherms were obtained by an America Micrometrics ASAP 2460 surface area analyzer. Fourier transform infrared (FT-IR) spectra were recorded on an America Perkin-Elmer Spectrum 100. The X-ray photoelectron spectroscopy (XPS) was measured using America Thermo Scientific K-Alpha. Ultraviolet-visible spectroscopy (UV–Vis) was performed using Shanghai UV-1901 spectrometer. The zeta potential was measured by ZEN 3600 Malvern Zetasizer Nano analyzer.

Part 2. Tables

Models	Parameters	TC	OTC	CTC
Pseudo-first-order model	$Q_{e(\mathrm{mg}\cdot\mathrm{g}^{-1})}$	83.1 ± 1.0	82.6 ± 0.8	87.3 ± 0.5
	k_1 (min ⁻¹)	1.105 ± 0.129	0.882 ± 0.073	1.636 ± 0.119
	R ²	0.9502	0.96919	0.98812
Pseudo-second- order model	$Q_{e(\mathrm{mg}\cdot\mathrm{g}^{-1})}$	84.9 ± 0.4	84.4 ± 0.1	88.4 ± 0.2
	k ₂ (mg·g ⁻ ¹ ·min ⁻¹)	0.0274 ± 0.0021	0.0218 ± 0.0004	0.0601 ± 0.0043
	\mathbb{R}^2	0.9924	0.9994	0.9967
Elovich model	α	$6.381 E6 \pm 1.798$	$1.717\text{E8}\pm4.153$	$4.119 E12 \pm 2.719$
	β	0.308 ± 0.036	0.266 ± 0.032	0.531 ± 0.078
	\mathbb{R}^2	0.9744	0.9649	0.9869
Weber-Morris model	k _{i1}	8.81 ± 0.23	15.83 ± 1.29	9.81 ± 0.56
	C _{i1}	55.66 ± 1.36	41.93 ± 2.24	64.13 ± 0.98
	R ²	0.9971	0.9776	0.9848
	k _{i2}	0.08 ± 0.01	0.24 ± 0.07	0.09 ± 0.03
	C _{i2}	83.92 ± 2.71	81.04 ± 0.79	87.29 ± 0.34
	\mathbb{R}^2	0.9966	0.9734	0.9819

Table S1. Kinetic model parameters for the adsorption of TC on SBA-15@NU-1000

Models	Parameters	TC	OTC	CTC
Langmuir isotherm	$Q_m (\mathrm{mg} \cdot \mathrm{g}^{-1})$	281.3 ± 30.5	357.0 ± 11.9	497.1 ± 42.0
	$b (L \cdot mg^{-1})$	0.130 ± 0.05	0.079 ± 0.008	0.215 ± 0.059
	R ²	0.9278	0.9706	0.9311
Freundlich isotherm	$K_{f}(mg^{1-1/n} \cdot L^{-1/n} \cdot g^{-1})$	60.8 ± 6.9	59.1 ± 5.8	142.2 ± 3.9
	n	2.60 ± 0.25	2.45 ± 0.17	2.94 ± 0.08
	R ²	0.9735	0.9798	0.9964
Sips isotherm	$Q_m (\mathrm{mg} \cdot \mathrm{g}^{-1})$	424.2 ± 33.7	450.7 ± 26.9	526.3 ± 51.8
	$b_{s} (mg^{-1/n} \cdot L^{-1/n})$	0.103 ± 0.018	0.042 ± 0.007	0.148 ± 0.063
	n	0.44 ± 0.12	0.75 ± 0.04	0.37 ± 0.06
	R ²	0.9682	0.9987	0.9962
Temkin isotherm	$a_T (L \cdot g^{-1})$	2621 ± 407	1047 ± 134	2023 ± 312
	$b_T(kJ \cdot mol^{-1})$	0.049 ± 0.006	0.071 ± 0.003	0.061 ± 0.009
	R ²	0.9323	0.9871	0.8631

 Table S2. Isotherm parameters for the adsorption of TC on SBA-15@NU-1000

Part 3. Figures

Fig. S1 SEM images showing the physical mixture of SBA-15 and NU-1000.

Fig. S2 SEM image of 0.25-SBA-15@NU-1000.

Fig. S3 High-resolution TEM images of 0.2-SBA-15@NU-1000.

Fig. S4 Adsorption kinetics of TCs on SBA-15@NU-1000 fitted by nonlinear PSO model.

Fig. S5 Removal efficiency $(Q_{ads}(\%))$ of SBA-15@NU-1000 toward various antibiotics (5 mg of SBA-15@NU-1000, 40 mg/L of the investigated antibiotics).

Fig. S6 Distribution plotting curve of TC at different pH.

Fig. S7 Zeta potential values of SBA-15@NU-1000 at different pH.