Supporting Information

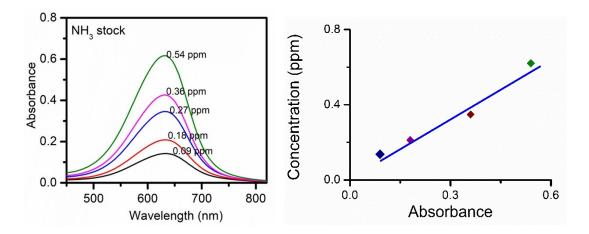
Electrochemical Nitrate Reduction to NH₃ by Faceted Cu₂O Nanostructures in Acidic Medium

Pranay Chandra Mandal, Ningma Dorzi Sherpa, Hiranmay Barma, Buban Adhikary and Nitish Roy

Department of Chemistry, University of North Bengal, Raja Rammohunpur, West Bengal 734013, India

Analysis of Electrochemical NO₃⁻ Reduction Product and Quantification

Preparation of standard NH₃ solution: To prepare a standard NH₄Cl solution 38.20 mg of NH₄Cl was dissolved in 100 mL DI water and further diluted as per requirement.


Preparation of standard phenol solution: 5 mL phenol was added to 45 mL of ethanol to obtain 50 mL of 1.0 M phenol solution.

Preparation of standard sodium nitroprusside solution: To prepare a 17 mM 50 mL solution of sodium nitroprusside, 200 mg sodium nitroprusside was into 50 mL water.

Preparation of standard sodium hypochlorite solution: An alkaline solution of tri-sodium citrate and sodium hydroxide was prepared by dissolving 20 g sodium citrate and 1 g NaOH in 100 mL DI water. Finally, this alkaline solution and sodium hypochlorite was added in 4:1 ratio to obtain alkaline sodium hypochlorite solution for colorimetric NH₃ detection.

Detection and quantification of NH₃ in the reaction mixture: NH₃ produced in electrochemical NO_3^- reduction by the Cu₂O based NCs was detected by the IPB method using phenol, sodium nitroprusside and alkaline sodium hypochlorite

solution. First, after electrochemical NO₃RR for 3h, 2 mL aliquot of the electrolyte was taken out and 3 mL of 1.0 M NaOH solution was added into it to make the solution alkaline. From this alkaline electrolyte solution, 1 mL diluted electrolyte solution was taken up and mixed with 7 mL DI water. To this solution, 500 μ L, 500 μ L and 1 mL of previously prepared phenol, sodium nitroprusside and sodium hypochlorite solution was added respectively and kept for 2 h incubation at ambient condition. This IPB coloured solution was further diluted as required to detect UV-Vis spectra at the reasonable absorption maxima value. In fact, a total of 50-time dilution was made prior to detection of NH₃ through UV-Vis spectra. The UV-Vis spectrum of the solution was recorded by a single beam UV-Vis spectrophotometer and the absorbance value at 630 nm was determined. A series of known concentrations of NH₄Cl solution were used to calibrate the absorbance values.

Fig. SI 1. (Left side) Indo-phenol complex formation at different concentration of NH_3 as shown in the graph. (Right side) Linear relationship of the Indo-phenol complex with NH_3 concentration at 630 nm passing through the origin.