Supplementary material

Synthesis of high-performance multifunctional electrode material using sweetwood lignin as a precursor

Loreta Tamasauskaite-Tamasiunaite^{1,*}, Daina Upskuviene¹, Aldona Balciunaite¹, Dijana Simkunaitė¹, Vitalija Jasulaitiene¹, Gediminas Niaura¹, Jolita Jablonskiene¹, Ramunas Levinas¹, Ance Plavniece², Aleksandrs Volperts², Galina Dobele², A. Zhurinsh², Ivar Kruusenberg³, Kätlin Kaare³, Luis César Colmenares-Rausseo⁴, Eugenijus Norkus¹

¹ Center for Physical Sciences and Technology (FTMC), Vilnius, Lithuania

² Latvian State Institute of Wood Chemistry, Riga, Latvia

³ National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

⁴ SINTEF Industry, Batteries and Hydrogen Technologies, Trondheim, Norway

Experimental

The Koutecky-Levich equation was used to analyze the number of electrons being transferred during the redox reaction [1]:

$$j^{-1} = j_K^{-1} + j_L^{-1} \tag{1}$$

$$j_{\rm L} = B w^{1/2} \tag{2}$$

$$B = 0.62nFD^{2/3} v^{1/6}C \tag{3}$$

where j, j_K , and j_L are the measured current density, the kinetic-limiting density, and the diffusion-limiting current density, respectively; ω is the rotation speed in rpm, F is the Faraday constant (96,485 C mol⁻¹), D is the diffusion coefficient of oxygen in 0.1 M KOH $(1.9 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1})$, v is the kinetic viscosity (0.01 cm² s⁻¹), and C is the bulk concentration of oxygen $(1.2 \times 10^{-6} \text{ mol cm}^{-3})$ [2]. Based on the above equations, the slope of B^{-1} can be obtained by a linear fitting of j^{-1} vs. $\omega^{-1/2}$, which gives the corresponding n value.

Results and Discussion

Fig. S1. LSVs recorded on N-AC-L (a) and AC-L (c) in O₂-saturated 0.1 M KOH at 10 mV s^{-1} at different rotation rates. (b, d) The corresponding Koutecky–Levich plots at 0.20-0.60 V electrode potentials.

 Table S1. A summary of the ORR performance of current state-of-the-art non-metallic

 catalysts based on heteroatom-doped carbon and representative advanced biomass-derived

 catalysts.

Material	Electro- lyte	Eonset, V vs. RHE	<i>E</i> _{1/2} , V vs. RHE	n	<i>j</i> _{lim} <i>at</i> 1600 rpm, mA cm ⁻²	Ref.
N-AC-L	0.1 M KOH	0.95	0.83	4	5.5	This study
N-doped akaline lignin (N-ALC)	0.1 M KOH	0.96 0.98 for Pt/C	0.84		2.03	[3]
N,P-doped nanocomposite carbon, 0.3 mg cm ⁻²	0.1 M KOH	0.93 for 1.01 Pt/C	0.68	~4	3.8 ~4 for Pt/C	[4]
NSCMS-MLSM	0.1 M KOH		0.83	2	4.78	[5]
n- HPFN@CQDs	0.1 M KOH	0.93	0.85	4	4.6	[6]
2D, N,S- Graphitic sheet 0.64 mg cm ⁻²	0.1 M KOH	1.01	~0.87	3.85	5.1	[7]
$N,P-C@GO \\ 0.2 \text{ mg cm}^{-2}$	0.1 M KOH	Close to Pt/C	-	3.7	16.9 17 for Pt/C	[8]
$g-C_{3}N_{4}@N$ doped C nanosheet 0.204 mg cm ⁻²	0.1 M KOH	~0.89	0.75 0.73 for Pt/C	3.9-4.0	~3.2-5.8 ~6 for Pt/C	[9]
N-doped graphene nanoribben 0.6 mg cm ⁻²	1 M KOH	0.92 0.94 for Pt/C	0.84 0.85 for Pt/C	3.95	~3-3.5 close to Pt/C	[10]
N, P co-doped C 0.15 mg cm^{-2}	0.1 M KOH	0.94	0.85 Close to Pt/C	~4	~4.25 ~5.5 for Pt/C	[11]
P-doped C ₃ N ₄ @C fiber	0.1 M KOH	0.94 0.99 for	0.67 0.8 for Pt-	~4	~10, ~15-20 for	[12]

paper direct electrode		Pt-CFP	CFP		Pt-CFP	
N, P co-doped C 0.2 mg cm^{-2}	0.1 M KOH	0.95	~0.8 V	3.9	~4.98, 4.86 for Pt/C	[13]
N, O, S-tri- doped C 0.203 mg cm^{-2}	0.1 M KOH	0.96	0.74	~4	4.5-6	[14]
B, N co-doped graphene	0.1 M KOH	~0.9		~4	-5.2, close to Pt/C	[15]
N, S co-doped graphene	0.1 M KOH	~0.91		3.3-3.6	~10 Close to Pt/C	[16]
porous g- $C_3N_4@C$ 0.17 mg cm ⁻²	0.1 M KOH	>0.9	-	3	~5 ~4 for Pt/C	[17]
N doped C; S, N-doped C from chitosan 0.4 mg cm ⁻²	0.1 M KOH	0.9; 0.93	-	3.9; 4	~12 ~10 for Pt/C	[18]
N doped C from amaranthus	0.1 M KOH	1.196	-	4	4.38 4.66 for Pt/C	[19]
N doped C nanosheet from monkey grass		0.87	-	4	4.9 3.7 for Pt/C	[20]
N doped C from ginko leave 0.71 mg cm ⁻²	0.1 M KOH	~0.9	positive 0.154 V to Pt/C	3.7	5.5 Close to Pt/C	[21]
N doped C from willow leave 0.4 mg cm^{-2}	0.1 M KOH	0.925	-	3.1	~3.7	[22]
Fe@C@N doped C from soybean ~0.5 mg cm ⁻²	0.1 M KOH	0.84	Positive 0.17 V to Pt/C		~2.2 2.5 for Pt/C	[23]
N doped C from bamboo fungi	0.1 M KOH	1.007		3.55	~3.5 ~4 for Pt/C	[24]

$Co_3O_4@N$ doped C from blood powder 0.56 mg cm ⁻²	0.1 M KOH	0.9	Positive 0.05 V to Pt/C	3.93	~6 ~5.5 for Pt/C	[25]
$\begin{array}{c} \text{CoFe}_2\text{O}_4@\text{N}, \text{P}\\ \text{co-doped C from}\\ \text{yeast}\\ 0.5 \text{ mg cm}^{-2} \end{array}$	0.1 M KOH	~0.8		3.56	~5.6	[26]
N doped C from bacillus subtilis	0.1 M KOH	0.93		3.96	~5	[27]

	Surface	Specific capacitance			
Sample	area,	$(F g^{-1}) / scan rate$	Electrolyte	Ref.	
	$m^2 g^{-1}$	$(mV s^{-1})$			
AC (activated carbon)	-	22.3 / 2	4 M NaNO ₃ - EG	[28]	
AC (activated carbon)	2066	116 / 2	1 M NaNO ₃	[29]	
	-	74 / 1	1.4 M Li ₂ SO ₄	[30]	
Graphana/CNE			(70%) +		
Graphene/Civi [*]			ethylene		
			glycol (30%)		
Microporous AC	2244	116 / 2	2 M Li ₂ SO ₄	[31]	
NCS-700 (nitrogen-doped porous carbon nanosheets)	1497.4	64.4 / 2	1 M Na ₂ SO ₄	[32]	
VN/MWCNT	-	160.3 / 2	0.5 M Na ₂ SO ₄	[33]	
AC (derived from banana fibers)	1097	74 ^a	1 M Na ₂ SO ₄	[34]	
Castor shell	1468	65 ^a	1 M Na ₂ SO ₄	[35]	
AC-800-3 (derived from torreya grandis shell)	2100.8	142.6 / 50	0.5 M Na ₂ SO ₄	[36]	
N-AC-L (derived from sweetwood lignin)	2690	106 / 5	1 M Na ₂ SO ₄	This study	

 Table S2. Electrochemical performance comparison among carbon materials in aqueous electrolytes.

^a Two electrode measurements

References

[1] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

[2] K. Kaare, E. Yu, T. Käämbre, A. Volperts, G. Dobele, A. Zhurinsh, G. Niaura, L. Tamasauskaite-Tamasiunaite, E. Norkus and I. Kruusenberg, Biomass-derived graphene-like catalyst material for oxygen reduction reaction, *ChemNanoMat*, 2021, **7**(3), 307.

[3] Z. Li, Y. Feng, X. Qu, Y. Yang, L. Dong, T. Lei and S. Ren, Impact of different lignin sources on nitrogen-doped porous carbon toward the electro-catalytic oxygen reduction reaction, *Int. J. Environ. Res. Public Health.*, 2023, **20**, 4383.

[4] D. Yuan, Y. Li, Q. She and X. Zhu, Lignin-derived dual-doped carbon nanocomposites as low-cost electrocatalysts, *Colloids Surf. A: Physicochem. Eng. Asp.*, 2023, **663**, 131105.

[5] Y. Han, D. Yan, Z. Ma, Q. Wang, X. Wang, Y. Li and G. Sun, Lignin-derived sulfonate base metal-free N, S co-doped carbon microspheres doped with different nitrogen sources as catalysts for oxygen reduction reactions, *Int. J. Biol. Macromol.*, 2023, **244**, 125363.

[6] Z. Ma, Y. Han, X. Wang, G. Sun and Y. Li, Lignin-derived hierarchical porous flowerlike carbon nanosheets decorated with biomass carbon quantum dots for efficient oxygen reduction, *Colloids Surf. A: Physicochem. Eng. Asp.*, 2022, **652**, 129818.

[7] C. Hu and L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution, *Adv. Mater.*, 2017, **29(9)**, 1604942.

[8] J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen and L. Dai, N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions, *Angew. Chem. Int. Ed.*, 2016, **55**(6), 2230.

[9] H. Yu, L. Shang, T. Bian, R. Shi, G.I. Waterhouse, Y. Zhao, C. Zhou, L.Z. Wu, C.H. Tung and T. Zhang, Nitrogen-doped porous carbon nanosheets templated from $g-C_3N_4$ as metal-free electrocatalysts for efficient oxygen reduction reaction, *Adv. Mater.*, 2016, **28**(**25**), 5080.

[10] H.B. Yang, J. Miao, S.-F. Hung, J. Chen, H.B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H.M. Chen, L. Dai and B. Liu, Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst, *Sci. Adv.*, 2016, **2**,1501122,

[11] J. Zhang, Z. Zhao, Z. Xia and L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, *Nat. Nanotechnol.*, 2015, **10**(5), 444.

[12] T.Y. Ma, J. Ran, S. Dai, M. Jaroniec and S.Z. Qiao, Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes, *Angew. Chem. Int. Ed.*, 2015, **54**(15), 4646.

[13] Y. Zhu, Y. Liu, Y. Liu, T. Ren, G. Du, T. Chen and Z. Yuan, Heteroatom-doped hierarchical porous carbons as high-performance metal-free oxygen reduction electrocatalysts, *J. Mater. Chem. A*, 2015, **3**(22), 11725.

[14] Y. Meng, D. Voiry, A. Goswami, X. Zou, X. Huang, M. Chhowalla, Z. Liu and T. Asefa, N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions, *J. Am. Chem. Soc.*, 2014, **136**(**39**), 13554.

[15] Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec and S.Z. Qiao, Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis, *Angew. Chemie Int. Ed.*, 2013, **52(11)**, 3110.

[16] J. Liang, Y. Jiao, M. Jaroniec and S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance, *Angew. Chemie Int. Ed.*, 2012, **51**(**46**), 11496.

[17] J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova, M. Jaroniec and S.Z. Qiao, Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C_3N_4 /carbon composite electrocatalyst, *Angew. Chem.*, 2012, **124(16)**, 3958.

[18] T.X. Wu, G.Z. Wang, X. Zhang, C. Chen, Y.X. Zhang and H.J. Zhao, Transforming chitosan into N-doped graphitic carbon electrocatalysts, *Chem. Commun.*, 2015, **51**(7), 1334.

[19] S. Gao, K. Geng, H. Liu, X. Wei, M. Zhang, P. Wang and J. Wang, Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction, *Energy Environm. Sci.*, 2015, **8**(1), 221.

[20] H. Zhang, Y. Wang, D. Wang, Y. Li, X. Liu, P. Liu, H. Yang, T. An, Z. Tang and H. Zhao, Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction, *Small*, 2014, **10**(**16**), 3371.

[21] F. Pan, Z. Cao, Q. Zhao, H. Liang and J. Zhang, Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction, *J. Power Sources*, 2014, **272** (Supplement C), 8.

[22] S. Gao, Y. Chen, H. Fan, X. Wei, C. Hu, L. Wang and L. Qu, A green one-arrow-twohawks strategy for nitrogen-doped carbon dots as fluorescent ink and oxygen reduction electrocatalysts, *J. Mater. Chem. A*, 2014, **2**(18), 6320.

[23] C.-Z. Guo, W.-L. Liao and C.-G. Chen, Design of a non-precious metal electrocatalyst for alkaline electrolyte oxygen reduction by using soybean biomass as the nitrogen source of electrocatalytically active center structures, *J. Power Sources*, **269** (Supplement C), 2014, 841.

[24] S. Gao, H. Fan and S. Zhang, Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity, *J. Mater. Chem. A*, 2014, **2**(**43**), 18263.

[25] C. Zhang, M. Antonietti and T.-P. Fellinger, Blood Ties: Co₃O₄ decorated blood derived carbon as a superior bifunctional electrocatalyst, *Adv. Func. Mater.*, 2014, **24(48)**, 7655.

[26] S. Liu, W. Bian, Z. Yang, J. Tian, C. Jin, M. Shen, Z. Zhou and R. Yang, A facile synthesis of CoFe₂O₄/biocarbon nanocomposites as efficient bi-functional electrocatalysts for the oxygen reduction and oxygen evolution reaction, *J. Mater. Chem. A*, 2014, **2**(**42**), 18012.

[27] H. Zhu, J. Yin, X. Wang, H. Wang and X. Yang, Microorganism-derived heteroatomdoped carbon materials for oxygen reduction and supercapacitors, *Adv. Funct. Mater.*, 2013, **23(10)**, 1305.

[28] C. Ramasamy, J. Palma del Val and M. Anderson, An analysis of ethylene glycolaqueous based electrolyte system for supercapacitor applications, *J. Power Sources*, 2014, **248**, 370.

[29] Q. Abbas, D. Pajak, E. Frąckowiak and F. Béguin, Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte, *Electrochim. Acta*, 2014, **140**, 132.

[30] R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang and Y. Lei, High performance supercapacitor for efficient energy storage under extreme environmental temperatures, *Nano Energy*, 2014, **8**, 231.

[31] Q. Gao, Optimizing carbon/carbon supercapacitors in aqueous alkali sulfates electrolytes, *J. Energy Chem.*, 2019, **38**, 219.

[32] C. Fan, Y. Tian, S. Bai, C. Zhang and X. Wu, Nitrogen-doped porous carbon nanosheets for high-performance supercapacitors, *J. Energy Storage*, 2021, **44**, 103492.

[33] Y. Su and I. Zhitomirsky, Hybrid MnO₂/carbon nanotube-VN/carbon nanotube supercapacitors, *J. Power Sources*, 2014, **267**, 235.

[34] V. Subramanian, Cheng Luo, A.M. Stephan, K.S. Nahm, S. Thomas and B. Wei, Supercapacitors from activated carbon derived from banana fibers, *J. Phys. Chem. C*, 2007, **111**, 7527.

[35] C.A. Okonkwo, G. Li, Y. Li, T. Lv, L. Jia, C.C. Okoye and S.N. Oba, Liquid nitrogencontrolled direct pyrolysis/KOH activation mediated micro-mesoporous carbon synthesis from castor shell for enhanced performance of supercapacitor electrode, *Biomass Convers*. *Biorefin.*, 2021, **13**(**4**), 1.

[36] H. Xuan, G. Lin, F. Wang, J. Liu, X. Dong and F. Xi, Preparation of biomass-activated porous carbons derived from torreya grandis shell for high-performance supercapacitor, *J. Solid State Electrochem.*, 2017, **21**, 2241.