Rapid solid-state synthesis of Mn₃O₄ nanocrystals at room temperature

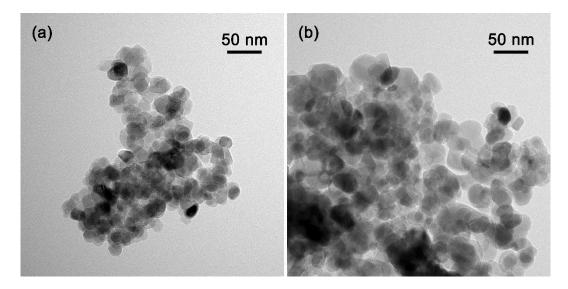
Wei Chen^a, Haisheng Fang^{a,b,*}

^a Faculty of Metallurgy and Energy Engineering, Kunming University of Science and

Technology, Kunming, 650093, China

^b Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China

* Corresponding author. E-mail address: hsfang@gia.cas.cn (Haisheng Fang).


Experimental

Chemicals of hydrated manganese salt (MnSO₄·H₂O, MnCl₂·4H₂O or Mn(CH₃COO)₂·4H₂O (AR, Sinopharm Chemical Reagent Co., Ltd)) and NaOH (AR, Sinopharm Chemical Reagent Co., Ltd) in a mole ratio of 1:2.05 were mixed by ballmilling at 300 rpm for 30 min with changing the direction of rotation per 15 min. During the mixing process, the solid-state reaction between hydrated manganese salt and NaOH took place, and Mn(OH)₂ was produced and air-oxidized. The obtained mixture was thoroughly washed by deionized water to remove sodium salts and residual NaOH, and then dried in vacuum at 80 °C.

For comparison, the reactions between manganese salts and NaOH in aqueous solution in a mole ratio of 1:2.05 were performed. For low-concentration reaction, the solution of 2.46 M NaOH was added dropwise to the solution of 0.3 M MnSO₄ and stirred in air at room temperature for 30 min, and then the suspension was filtered and fully washed by deionized water, and finally dried in vacuum at 80 °C. The high-concentration reaction between 3 M MnSO₄ solution and 24.6 M NaOH solution was

also performed.

The crystalline phase of the reaction products were identified by X-ray diffraction (XRD, Rigaku-TTRIII18kW) utilizing CuK_{α} radiation. The particle morphology and size of the products were observed by scanning electron microscopy (FE-SEM, Thermoscientific Apreo 2C) and transmission electron microscopy (TEM, FEI Tecnai G2 TF30). Magnetic properties were measured on a physical properties measurement system (PPMS DynaCool-14T, Quantum Design).

Supplementary figure

Fig. S1 TEM images of the washed products from the solid-state reactions of (a) $MnSO_4$ ·H₂O and (b) $MnCl_2$ ·4H₂O with NaOH.

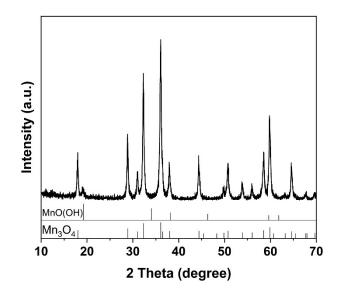


Fig. S2 XRD pattern of the washed product by the solid-state reaction of $MnSO_4$ ·H₂O with 20% excess NaOH.