Supporting Information: Determination of Contact Ion-Pair Formation in CoCl₂ Aqueous, Methanol, and Ethanol Dilute Solutions by UV-vis and X-ray Absorption Spectroscopies

Alessandro Tofoni, Matteo Busato,* Irene Rigacci, Mauro Giustini, and Paola D'Angelo*

Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy

E-mail: matteo.busato@uniroma1.it; p.dangelo@uniroma1.it

Contents

1 \$	Supplementary	Figures	(Figures S1-S5) S	S-2
------	---------------	---------	-------------------	-----

2 Supplementary Tables (Tables S1 - S2) S-8

1 Supplementary Figures (Figures S1-S5)

Figure S1: Photographs of the 0.1 mol L^{-1} CoCl₂, Co(Tf₂N)₂ (Tf₂N = (CF₃SO₂)₂N⁻), and Co(NO₃)₂ aqueous, methanol (MeOH), and ethanol (EtOH) solutions investigated in this work.

Figure S2: Co K-edge a) normalized X-ray absorption near edge structure (XANES), b) extended X-ray absorption fine structure (EXAFS), and b) non-phase shift-corrected Fourier Transform (FT) experimental spectra collected on the 0.1 mol L^{-1} CoCl₂ and Co(NO₃)₂ aqueous solutions. The FT's have been calculated in the 2.3 - 12.0 Å⁻¹ k-range.

Figure S3: Co K-edge a) normalized XANES, b) EXAFS, and b) non-phase shift-corrected FT experimental spectra collected on the 0.1 mol L^{-1} CoCl₂ and Co(TfO)₂ (TfO = CF₃SO₃⁻) solutions in MeOH. The FT's have been calculated in the 2.3 - 12.0 Å⁻¹ k-range.

Figure S4: Analysis of the Co K-edge EXAFS spectrum collected on the 0.1 mol L^{-1} CoCl₂ solution in MeOH carried out assuming six-fold MeOH coordination. Upper panel: best-fit single-scattering (SS) and multiple-scattering (MS) theoretical signals, together with the total theoretical contribution (blue lines) compared with the experimental data (red dots) and the resulting residuals (blue dots). Lower panel: non-phase shift-corrected FT's of the best-fit theoretical signal (blue line), of the experimental data (red dots), and of the residuals (blue fragmented line).

Figure S5: Analysis of the Co K-edge EXAFS spectrum collected on the 0.1 mol L^{-1} Co(TfO)₂ solution in MeOH. Upper panel: best-fit SS and MS theoretical signals, together with the total theoretical contribution (blue lines) compared with the experimental data (red dots) and the resulting residuals (blue dots). Lower panel: non-phase shift-corrected FT's of the best-fit theoretical signal (blue line), of the experimental data (red dots), and of the residuals (blue fragmented line).

Figure S6: Experimental Co K-edge XANES spectrum of the 0.1 mol L^{-1} CoCl₂ solution in EtOH (red dots) compared with the MXAN best-fit calculations for the $[Co(EtOH)_6]^{2+}$ cluster (black full line). The residual function R_{sq} is reported together with the optimized cluster (cobalt is purple, oxygen is red, carbon is gray, and hydrogen is white).

2 Supplementary Tables (Tables S1 - S2)

Salt	Solvent
CoCl_2	Water
$\rm Co(NO_3)_2$	Water
$\mathrm{Co}(\mathrm{Tf}_2\mathrm{N})_2$	Water
CoCl_2	MeOH
$Co(TfO)_2$	MeOH
$\rm Co(Tf_2N)_2$	MeOH
CoCl_2	EtOH
$\mathrm{Co}(\mathrm{Tf}_2\mathrm{N})_2$	EtOH

Table S1: List of the prepared 0.1 mol L^{-1} cobalt salt solutions.

Table S2: Best-fit structural parameters for the two-body distributions obtained from the EXAFS analysis of the 0.1 mol L⁻¹ Co(TfO)₂ solution in MeOH. N is the coordination number, R the average distance, σ^2 the Debye-Waller factor, and β the asymmetry index.

		N	R (Å)	σ^2 (Å ⁻²)	β
$Co(TfO)_2$ in MeOH	Co-O	6.0(3)	2.09(2)	0.002(2)	0.3(1)
	Co-C	6.0(6)	3.36(5)	0.028(6)	0.0(3)