Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Syntheses and Coordination Chemistry of Thiosemicarbazone-based Titanium Complexes

Kevin Schwitalla, Marie Claußen, Marc Schmidtmann and Rüdiger Beckhaus*

Chemistry Department, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany

E-mail: ruediger.beckhaus@uol.de

TABLE OF CONTENTS

NMR spectra of complexes	2
Computational methods	
Crystallographic data	
IR Spectra	
EPR Spectra	
References	

NMR Spectra of complexes

Figure S1: ¹H NMR spectrum (500 MHz, C_6D_6 , 305 K) of **Ti1a**. Product signals given in colours (° = C_6H_5D , # = *n*-hexane, * = grease).

Figure S2: 13 C NMR spectrum (125 MHz, C₆D₆, 305 K) of Ti1a.

Figure S4: ¹H NMR spectrum (500 MHz, C_6D_6 , 305 K) of **Ti1b**. Product signals given in colours (° = C_6H_5D , # = *n*-hexane, * = grease).

Figure S6: ¹H-¹⁵N-HMBC NMR spectrum (51 MHz, C₆D₆, 305 K) of **Ti1b**.

Figure S7: ¹H NMR spectrum (500 MHz, C_6D_6 , 305 K) of **Ti1c**. Product signals given in colours (° = C_6H_5D , # = *n*-hexane, * = grease).

Figure S8: ^{13}C NMR spectrum (125 MHz, $C_6D_6,$ 305 K) of Ti1c.

Figure S9: ¹H-¹⁵N-HMBC NMR spectrum (51 MHz, C₆D₆, 305 K) of **Ti1c**.

Figure S10: ¹H NMR spectrum (300 MHz, C_6D_6 , 305 K) of product mixture after the reaction of **Ti1** with TSCN **d**.

Figure S11: ¹H NMR spectrum (500 MHz, C_6D_6 , 305 K) of **Ti2a**. Product signals given in colours (° = C_6H_5D , # = *n*-hexane, * = grease).

Figure S12: ¹³C NMR spectrum (125 MHz, C₆D₆, 305 K) of Ti2a.

Figure S14: ¹H NMR spectrum (500 MHz, C_6D_6 , 305 K) of **Ti2b**. Product signals given in colours (° = C_6H_5D).

Figure S15: ¹³C NMR spectrum (125 MHz, C₆D₆, 305 K) of Ti2b.

Computational methods

The DFT (density functional theory) calculations were performed with the B3LYP/Def2-TZVP level of theory.^[1] The optimized ground state geometry of **Ti3c** was calculated in gas phase.

Cartesian coordinates (Å) of Ti3c:

Ti	1.824692	3.439617	1.086387
Ν	3.276898	4.189097	2.645833
Ν	0.528687	4.185418	2.948117
С	0.828001	5.392527	0.034905
С	2.236556	1.422539	2.328711
С	3.102956	1.412646	1.206314
С	2.152658	5.722689	0.397554
С	0.880758	4.383560	-0.943802
С	2.302358	1.309022	0.049925
С	2.243807	4.102327	-1.207180
С	0.944483	1.262484	0.452291
С	0.908459	1.318102	1.856826
С	3.032721	4.922102	-0.375287
Ν	-0.780398	4.185759	3.281096
С	1.285936	4.641002	3.898334
С	4.609209	4.197199	2.541084
С	2.720864	4.661120	3.780724
Н	2.534921	1.480529	3.363219
Н	4.180623	1.446813	1.231375
Н	2.663001	1.252476	-0.963471
Н	0.085824	1.204432	-0.195431
Н	0.017430	1.311512	2.462108
Н	2.442731	6.466566	1.122122
Н	4.110396	4.956304	-0.357022
Н	2.614655	3.396204	-1.931217
Н	0.030114	3.905763	-1.399423
Н	-0.073139	5.804868	0.456773
Н	0.867764	4.987645	4.841678
С	3.495625	5.144338	4.841312
С	4.873178	5.147344	4.718033
Н	2.999201	5.492437	5.738053
С	5.443627	4.666019	3.543069
Н	5.494753	5.514593	5.524313
Н	6.515319	4.646641	3.401581
Н	5.018987	3.810376	1.617712
S	-0.920136	4.581897	7.090213
0	0.405678	5.154871	6.911605
0	-1.709170	4.593893	5.840327
0	-1.650285	4.947888	8.270430
С	-0.567984	2.759470	7.282528
F	0.154770	2.505600	8.377476
F	0.134459	2.309398	6.213890

F	-1.698616	2.044718	7.348062
Н	-0.984502	4.435560	4.265324
С	-1.872947	3.774539	2.541484
S	-1.879403	3.366804	0.924999
Ν	-2.978902	3.766484	3.308069
Н	-2.884838	3.989886	4.294172
С	-4.301127	3.444212	2.810480
Н	-5.002763	3.555721	3.635085
Н	-4.586063	4.113399	1.996917
Н	-4.342927	2.420606	2.433808

Crystallographic data

Single crystal X-ray data for **Ti1a** were measured on a Bruker AXS Apex II diffractometer (graphite monochromator, Mo-K α radiation, $\lambda = 0.71073$ Å, Kappa 4-circle goniometer, Apex II CCD detector). Single crystal data for **Ti1c**, **Ti1d**, **Ti2b** and **Ti3d** were measured on a Bruker AXS D8 Venture diffractometer (multilayer optics, Mo-K α and Cu-K α radiation with $\lambda = 0.71073$ Å and 1.54178 Å respectively, Kappa 4-circle goniometer, Photon III C14 CPAD detector). All crystals were measured at a temperature of 100 K. Absorption corrections using equivalent reflections were performed with the program SADABS.^[2] For **Ti1a** a numerical absorption correction was performed using the same program. All structures were solved with the program SHELXS^[3] and refined with SHELXL^[4] using the OLEX2^[5] GUI.

All non H atoms were refined using anisotropic atomic displacement parameters (ADPs). H atoms bonded to C were located in the difference Fourier maps and placed on idealized geometric positions with idealized atomic displacement parameters using the riding model. H atoms bonded to N were refined freely. The geometry of the disordered solvent tetrahydrofuran in **Ti3d** was restrained to be the same (SAME instruction in SHELXL), and the isotropic ADPs were constrained to be the equal (EADP).

The	crystallographic	data	can	be	obtai	ned	free	of	charge	from
https://	/www.ccdc.cam.ac.u	k/structu	ires/	quoting	the	CCDC	num	bers	2377764-23	377768.

	Ti1a	Ti1c	Ti1d	Ti2b	Ti3d
CCDC	2377765	2377767	2377764	2377768	2377766
Lab-ID	KESC146	MACL22	MACL25	MACL28	KESC269
empirical formula	$C_{39}H_{47}N_3STi$	$C_{44}H_{52}N_4STi$	C ₃₉ H ₄₇ N ₃ OSTi	$C_{47}H_{45}N_3S_2Ti$	$C_{42}H_{54}F_6N_6O_{11}$
					S ₄ Ti ₂
Fw	637.75	716.85	653.75	763.88	1156.95
Colour	red	orange	orange	red	yellow green
					orange
Habit	block	rod	block	block	block
cryst. dimens. mm	0.40 x 0.35 x	0.25 x 0.07 x	0.06 x 0.06 x	0.12 x 0.09 x	0.12 x 0.10 x
	U.25	0.02		0.05	0.04
cryst. system		orthornombic	monoclinic		monoclinic
space group	P-1	Pbca	PZ _{1/n}	PZ _{1/n}	C2/C
a, A	11.6805(6)	23.3583(14)	12.0547(3)	14.4377(5)	13.7863(7)
b, A	12.0032(6)	10.5011(5)	11.8933(3)	12.5870(5)	22.5048(13)
с, А	12.9169(7)	30.2781(18)	22.4765(5)	21.9625(8)	17.5439(10)
α , deg	92.218(3)	90	90	90	90
β , deg	107.971(3)	90	101.8642(12)	97.4150(15)	105.069(2)
γ, deg	109.627(2)	90	90	90	90
V, Å ³	1601.95(15)	7426.8(7)	3153.62(13)	3957.8(3)	5256.0(5)
Z	2	8	4	4	4
D _{calc.} , g cm ⁻³	1.322	1.282	1.377	1.282	1.462
μ, mm ⁻¹	0.366	0.324	3.200	0.359	0.544
Т, К	100(2)	100(2)	100(2)	100(2)	100(2)
λ, Å	0.71073	0.71073	1.54178	0.71073	0.71073
heta range, deg	1.679 – 40.248	1.345 – 27.103	3.871 – 74.469	1.598 – 30.033	1.777 – 30.033
reflections	100842	134443	54536	235418	95632
collected					
Indep. Reflecions	20177	8197	6406	11566	7702
R(int)	0.0243	0.0786	0.0440	0.0418	0.0504
Observed	17407	7084	5846	10485	6819
reflections (I > 2(I))					
Absorption	numerical	semi-empirical	semi-empirical	semi-empirical	semi-empirical
correction					
max, min transm.	0.9319, 0.8918	1.0000,	1.0000,	1.0000,	1.0000,
a		0.9099	0.9074	0.9392	0.9135
final R indices	R1 = 0.0283,	R1 = 0.0449,	R1 = 0.0315,	R1 = 0.0350,	R1 = 0.0556,
[I>2ơ(I)]	wR2 = 0.0773	wR2 = 0.0904	wR2 = 0.0818	wR2 = 0.0909	wR2 = 0.1387
R indices (all data)	R1 = 0.0357,	R1 = 0.0553,	R1 = 0.0355,	R1 = 0.0394,	R1 = 0.0634,
	wR2 = 0.0812	wR2 = 0.0954	wR2 = 0.0847	wR2 = 0.0939	wR2 = 0.1434
GOF on F ²	1.045	1.085	1.037	1.068	1.113
largest diff peak / hole (e.Å- ³)	0.604 / -0.352	0.331 / -0.407	0.515 / -0.260	0.435 / -0.317	1.629 / -0.638

IR spectra

Figure S18: IR Spectrum of Ti1b.

Figure S20: IR Spectrum of Ti2a.

Figure S21: IR Spectrum of Ti2b.

Figure S22: IR Spectrum of Ti3c.

Figure S23: IR Spectrum of Ti3d.

EPR Spectra

Figure S24: EPR spectrum of complex Ti3c in toluene at room temperature (g = 1.980).

Figure S25: EPR spectrum of complex Ti3d in THF at room temperature (g = 1.977).

References

[1] Weigend, F.; Ahlrichs, R., Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.

[2] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3-10.

[3] G. M. Sheldrick, Acta Crystallogr. Sec. A 2008, 64, 112-122.

[4] G. M. Sheldrick, Acta Crystallogr. Sec. C 2015, 71, 3-8.

[5] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* **2009**, *42*, 339-341.