Supplementary Information

Cobalt complex with tetradentate aminopyridine ligand: A singlecomponent and efficient catalytic system for cycloaddition reactions of CO₂ and epoxides

Ning Yu,^a Bowen Zhang,^{a,b} Shuyan Liang,^a Minghui Shi,^a Feng Han,^{a,*} Congcong Zhang,^{a,*} Qingfeng Yang^c and Chengxia Miao^{a,*}

^a Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China

^b Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

° State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering,

Ningxia University, Yinchuan, 750021, Ningxia, China

* Corresponding authors: fenghan@sdau.edu.cn, cczhang@sdau.edu.cn, chxmiao@sdau.edu.cn
E-mail: fenghan@sdau.edu.cn (F. Han), cczhang@sdau.edu.cn (C. Zhang), chxmiao@sdau.edu.cn
(C. Miao)

Table of Contents

1.	Part Data for Screening the Reaction Conditions	.S2
2.	The Crystalline Data of 3a-Co	.S4
3.	The XPS of 3b-Co	.S6
4.	The Gas Spectra of Cycloaddition Reaction between 4a and CO ₂	S7
5.	Copies of ¹ H and ¹³ C NMR Spectra	.S8
6.	Computational Methods	S21
7.	References	S25

1. Part Data for Screening the Reaction Conditions

Oxide and CO _{2^{<i>a</i>}}						
Entry	3b (mol%)	CoBr ₂ (mol%)	Conversion $(\%)^b$	Yield $(\%)^b$	Selectivity $(\%)^b$	
1	1	1	73	72	99	
2	3	3	78	75	96	
3	5	5	94	93	99	
4	7	7	95	85	89	
5	5	10	96	74	77	
6	5	2.5	84	80	95	

Table S1. Screening the Ratios of 3b:CoBr₂ for the Cycloaddition Reaction between Styrene

^{*a*} Reaction conditions: 1 mmol styrene oxide and 2.5 MPa CO₂ were catalyzed by certain amount of **3b** and CoBr₂ in CH₃CN at 90 °C for 8 h. ^{*b*} Determined by gas chromatography using biphenyl as the internal standard.

Table	S2.	Exploring	the	Solvent	Effect	on	the	Cycloaddition	Reaction	Between	Styrene

Entry	Solvent	Conversion (%) ^{b}	Yield $(\%)^b$	Selectivity (%) ^{b}	
1	CH ₃ CN	94	93	99	
2	DCE	88	78	89	
3	Toluene	81	70	86	
4	MeOH	90	62	69	
5	DMC	83	81	98	
6	DMF	98	79	81	
7	THF	88	79	90	
^a Reaction conditions: 1 mmol styrene oxide and 2.5 MPa CO ₂ were catalyzed by 5					
mol% of 3b and 5 mol% of CoBr ₂ in certain solvent at 90 °C for 8 h. ^b Determined by					

gas chromatography using biphenyl as the internal standard.

Oxide and CO₂^a

Entry	T (h)	Conversion (%) ^{b}	Yield $(\%)^b$	Selectivity $(\%)^b$
1	6	92	88	96
2	7	93	89	96
3	8	94	93	99
4	9	92	90	98
5	10	93	91	98
^a Reaction c	onditions: 1 r	nmol styrene oxide an	nd 2.5 MPa CO_2	were catalyzed by 5

Table S3. Exploring the Reaction Time on the Cycloaddition Reaction Between Styrene Oxide and CO_2^a

^{*a*} Reaction conditions: 1 mmol styrene oxide and 2.5 MPa CO₂ were catalyzed by 5 mol% of **3b** and 5 mol% of CoBr₂ in CH₃CN at 90 °C for several hours. ^{*b*} Determined by gas chromatography using biphenyl as the internal standard.

Table S4. Exploring the Reactivity of Catalyst at a Short Time on the Cycloaddition Reaction Between Styrene Oxide and CO_2^a

Entry	catalyst	Conversion (%) ^{b}	Yield $(\%)^b$	Selectivity $(\%)^b$
1	3a-Co	88	68	77
2	3b-Co	95	90	95
3	3c-Co	96	91	95
^a Reaction	conditions: 1 m	mol styrene oxide a	nd 2.5 MPa CO ₂	were catalyzed by 5

mol% of catalyst at 90 °C for 2 hours in absence of solvent. ^{*b*} Determined by gas chromatography using biphenyl as the internal standard.

2. The crystalline data of 3a-Co

Name	Data
Empirical formula	$C_{20}H_{28}Br_2CoN_4$
Formula weight	543.21
Space group	P 43 21 2
<i>a</i> , Å	9.19310(10)
$b, \mathrm{\AA}$	9.19310(10)
<i>c</i> , Å	23.9143(4)
α , deg	90
β , deg	90
γ, deg	90
V, Å ³	2021.07(6)
Ζ	4
temp, K	100.01(10)
λ (Cu K α), Å	1.54184
<i>D</i> , g cm ⁻³	1.785
Final R indices [I>2sigma(I)]	R1 = 0.0286, wR2 = 0.0717
R indices (all data)	R1 = 0.0300, wR2 = 0.0723

Table S5. Data Collection and Structure Refinement for 3a-Co

Bond Distances (Å)					
Co1-N1	2.157(3)				
Co1-N2	2.157(3)				
Co1-N3	2.218(4)				
Co1-N4	2.218(4)				
Co1 Br1	2.5850(7)				
Bond A	Angles (°)				
Br1-Co1-Br1	94.24(4)				
N1-Co1-Br1	89.55(9)				
N1-Co1-Br1	89.55(9)				
N1-Co1-Br1	97.16(9)				
N1-Co1-Br1	97.16(9)				
N1-Co1-N1	170.16(18)				
N1-Co1-N2	76.69(12)				
N1-Co1-N2	95.68(12)				
N1-Co1-N2	95.68(12)				
N1-Co1-N2	76.69(12)				
N2-Co1-Br1	170.33(8)				
N2-Co1-Br1	170.33(8)				
N2-Co1-Br1	93.18(9)				
N2-Co1-Br1	93.18(9)				
N2-Co1-N2	80.16(18)				

Table S6. Selected Bond Distances (Å) and Angles (°) for 3a-Co

3. The crystalline data of 3b-Co

Figure S1. XPS of 3b-Co.

4. The Gas Spectra of Cycloaddition Reaction Between 4a and CO₂

Figure S2. The gas chromatogram of cycloaddition reaction between **4a** and CO_2 under various conditions: ligand **3b** (5 mol%) (A, table 1, entry 4) or $CoBr_2$ (5 mol%) (B, table 1, entry 5) was used separately; CoF_2 (C, table 1, entry 15); $Co(OAc)_2$ (D, table 1, entry 16); 0.1 MPa CO_2 (E, table 1, entry 17); 25 °C (F, table 1, entry 6).

5. Copies of ¹H and ¹³C NMR Spectra

Figure S3. ¹H NMR spectrum of 3a

Figure S4. ¹³C NMR spectrum of 3a

Figure S5. ¹H NMR spectrum of 3b

Figure S6. ¹³C NMR spectrum of 3b

Figure S7. ¹H NMR spectrum of 3c

Figure S8. ¹³C NMR spectrum of 3c

Figure S10. ¹³C NMR spectrum of 5a

Figure S11. ¹H NMR spectrum of 5b

Figure S12. ¹³C NMR spectrum of 5b

Figure S13. ¹H NMR spectrum of 5c

Figure S14. ¹³C NMR spectrum of 5c

Figure S15. ¹H NMR spectrum of 5d

Figure S16. ¹³C NMR spectrum of 5d

Figure S17. ¹H NMR spectrum of 5e

Figure S18. ¹³C NMR spectrum of 5e

Figure S19. ¹H NMR spectrum of 5f

Figure S20. ¹³C NMR spectrum of 5f

Figure S21. ¹H NMR spectrum of 5g

Figure S22. ¹³C NMR spectrum of 5g

Figure S23. ¹H NMR spectrum of 5h

Figure S24. ¹³C NMR spectrum of 5h

Figure S25. ¹H NMR spectrum of 5i

Figure S26. ¹³C NMR spectrum of 5i

Figure S27. ¹H NMR spectrum of 5j

Figure S28. ¹³C NMR spectrum of 5j

6. Computational Methods

Geometric optimizations and frequency calculations were performed with Gaussian 16 C01.^[S1] TPSSh functional^[S2] was used. The def2-TZVP basis sets were used for the Co and Br atoms, and the def2-SVP basis sets were used for the other atoms.^[S3-S5] Grimme's dispersion correction^[4] with Becke-Johnson damping^[S6] was applied. Grimme's quasi-harmonic approximation was applied to correct the entropy contribution from low-frequency vibrational modes by A single-point energy on the optimized gas phase geometry was calculated with the Model based on Density (SMD).^[S7-S8] Since the epoxides were not parametrized in the SMD implementation of Gaussian 16, 1-hexanol was selected as the continuum due to its similar elemental composition and dielectric constant (ethylene oxide: 12.7 at 298.15 K;^[S9] 1-hexanol: 12.51, from the Gaussian 16 SCRF definition). The electronic energies were further corrected with a single-point gas phase calculation at the PWPB95-D4^[S10-S11]/def2-TZVPP level using ORCA 5.0.4.^[S12] Resolution of identity (RI) approximation was applied to accelerate the computation, and the def2-TZVPP/C auxiliary basis sets^[S13] were used. A –1.89 kcal/mol molar correction on the Gibbs free energy was applied to each solvated species. The wavefunction analyses were performed with Multiwfn 3.8 (dev).^[S14]

5.1 Molar Correction on Gibbs Free Energies

In Gaussian 16, the Gibbs free energies are calculated under the gas phase standard state, 298.15 K and 1 atm (denoted as ΔG_p^0), even if implicit solvation model has been applied. In order to convert ΔG_p^0 to ΔG_m^0 (standard molar Gibbs free energy), we consider the chemical equation below for an associate reaction of A and B:

$$A + B \rightarrow AB \cdots (Eq. S1)$$

The standard Gibbs free energies can be expressed as a function of the equilibrium constant K_p or K_m :

$$\Delta G_p^0 = -RT \ln K_p = -RT \ln \frac{\frac{p(AB)}{p^0}}{\left[\frac{p(A)}{p^0}\right] \cdot \left[\frac{p(B)}{p^0}\right]} \cdots (Eq. S2)$$

$$\Delta G_m^0 = -RT \ln K_m = -RT \ln \frac{\frac{c(AB)}{c^0}}{\left[\frac{c(A)}{c^0}\right] \cdot \left[\frac{c(B)}{c^0}\right]} \cdots (Eq. S3)$$

Where p(i) is the equilibrium pressure of species i, and c(i) is the equilibrium constant of species

i. p^0 is the normal pressure (1 atm), and c^0 is the standard concentration (1 mol/L).

Subtracting the expressions of ΔG_p^0 from ΔG_m^0 gives

$$\Delta G_m^0 - \Delta G_p^0 = -RT \ln \left\{ \frac{c(AB)}{p(AB)} \cdot \left[\frac{c(A)}{p(A)} \right]^{-1} \cdot \left[\frac{c(B)}{p(B)} \right]^{-1} \cdot \left[\frac{c^0}{p^0} \right] \right\} \cdots (Eq. S4)$$

From pV = nRT we have p = (n/V)RT = cRT. Therefore

$$\Delta G_m^0 - \Delta G_p^0$$

= - RT ln $\left\{ (RT)^x \cdot \left[\frac{c^0}{p^0} \right] \right\}$ = - 1.9872 × 10⁻³kcal · K⁻¹ · mol⁻¹ · 298.15K · ln $\left[(q_1 - 1)^2 + (q_2 - 1)^2 + (q_1 - 1)^2 + (q_2 - 1)^2 + ($

Showing that a -1.89 kcal/mol correction should be applied to the Gibbs free energy for the associate reaction to refer to the correct standard state in the solution.

5.2 DFT Calculated Energies

	E _e (PWPB95D4)	E _e (TPSSh-D3,	E _e (TPSSh-D3, gas)	G(TPSSh-D3, gas)
		SMD)		
Br ⁻	-2574.197606	-2574.227634	-2574.144560	-2574.160736
ethylene	-153.745232	-153.691646	-153.687704	-153.653854
oxide				
CO ₂	-188.562078	-188.441547	-188.446336	-188.455361
ethylene	-342.334465	-342.176635	-342.166199	-342.118979
carbonate				
3b-CO	-7990.772513	-7990.509916	-7990.467756	-7989.903511
IM1	-5416.428138	-5416.261049	-5416.178454	-5415.611166
IM2	-5570.201927	-5569.974239	-5569.898258	-5569.275532
IM3	-8144.526415	-8144.214131	-8144.170077	-8143.550072
TS1	-8144.484629	-8144.200801	-8144.129600	-8143.511399
IM4	-8144.537025	-8144.223281	-8144.181757	-8143.561541
IM5	-8333.109132	-8332.677356	-8332.640849	-8332.012448
TS2	-8333.094619	-8332.672292	-8332.631071	-8332.000846
IM6	-8333.116126	-8332.695865	-8332.649865	-8332.016122
TS3	-8333.076167	-8332.667221	-8332.613186	-8331.982128
IM7	-5758.800939	-5758.461054	-5758.387488	-5757.750095

Table S7. DFT Calculated Electronic Energies and Gibbs Free Energies (in Hartree)

PWPB95-D4/def2-TZVPP (SMD in 1-Hexanol) // TPSSh-D3/BS1						
3b-Co	dG(corrected)	За-Со	dG(corrected)			
Br-		Br-				
EO		EO				
CO2		CO2				
Co_N4_Br2	0.00	Co_N4_Br2	0.00			
Co_N4_Br+	8.25	Co_N4_Br+	7.96			
Co_N4_Br_EO+	8.61	Co_N4_Br_EO+	8.22			
Co_N4_Br_EO_Br	7.70	Co_N4_Br_EO_Br	9.88			
TS1	15.75	TS1	15.31			
Co_N4_Br_OCH2CH2Br	2.76	Co_N4_Br_OCH2CH2Br	3.25			
Co_N4_Br_OCH2CH2Br_CO2	5.52	Co_N4_Br_OCH2CH2Br_CO2	5.94			
TS2	12.81	TS2	11.69			
Co_N4_Br_OCH2CH2Br_OCO	2.66	Co_N4_Br_OCH2CH2Br_OCO	3.33			
Co_N4_Br_OCH2CH2Br_OCO_iso	-0.43	Co_N4_Br_OCH2CH2Br_OCO_iso	-0.36			
Co_N4_Br_OCH2CH2Br_OCO_stable	-1.48	Co_N4_Br_OCH2CH2Br_OCO_stable	-1.00			
TS3	16.87	TS3	16.51			
Co_N4_Br_EC+	-3.09	Co_N4_Br_EC+	-3.26			
EC	-11.96	EC	-11.96			

Table S8. DFT Calculated Gibbs Free Energies in the Reaction Process of 3b-Co and 3a-Co

To investigate the possibility of a ring-opening mechanism involving two Co-complex molecules, DFT calculations were performed at the TPSSh-D3/def2-TZVPP(SMD, 1-hexanol)//TPSSh-D3/def2-SVP level. Assuming that the Br was provided by one of the Br ligand from the Co complex, the ring-opening activation barrier was calculated to be 8.96 (10.91) kcal/mol in Δ H (Δ G). In comparison, the single-Co mechanism proposed in the main text calculated at the same computational level shows a lower activation barrier of 3.90 (3.79) kcal/mol in Δ H (Δ G). Comparison of the ring-opening transition state of the two-Co (Fig S29a) and the single-Co (Fig S29b) mechanisms suggests that the irreversible ring opening occurs at a much later stage in the two-Co mechanism, as can be reflected by the longer C-O and shorter Br-C in its TS structure. This is likely due to the Br being bound by the source Co catalyst, and as a result, a higher activation energy is required. Furthermore, due to the low concentration of the catalyst, a two-Co mechanism would seem even less likely. We therefore would expect the single-Co mechanism to have a higher probability, as such close-binding cation-anion species (in this case, cation = Co(N₄)Br(EO)⁺, anion = Br) has been commonly observed in many nucleophilic substitution reactions.

(a)

Fig S29. Ring-opening transition state structure for (a) the two-Co mechanism and (b) the single-Co mechanisms.

7. References

[S1] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian, Inc. Wallingford CT.*, 2016.
[S2] V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, *J. Chem. Phys.*, 2003, **119**, 12129–

12137.

- [S3] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305;
- [S4] F. Weigend, Phys. Chem. Chem. Phys, 2006, 8, 1057-1065.
- [S5] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [S6] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- [S7] S. Grimme, J. Chem. Eur., 2012, 18, 9955-9964;
- [S8] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem., 2009, 113, 6378–6396.
- [S9] S. Kozuch, J. M. Martin, J. Comput. Chem., 2013, 34, 2327-2344.
- [S10] D. W. Davidson, G. J. Wilson, Can. J. Chem., 1963, 41, 1424-1434;
- [S11] E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys., 2017, 147, 034112.
- [S12] F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
- [S13] A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Theor. Chem. Acc., 2007, 117, 587–597.
- [S14] T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580-592.