Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

Identification and molecular mechanism study of novel small molecule inhibitor targeting Solute Carrier Family 7 Member 11 for the treatment of hepatocellular carcinoma

Xiaomeng Wang^{a,b,#}, Yan Yang^{a,b,#}, Qiao Fu^{a,b}, Jing Luo^{a,b}, Juan Wang^{a,b,c,d,e,*}

^a Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China

^bKey Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing 400054, China

^c Department of Pathophysiology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China

^dKey Laboratory of Extreme Environmental Medicine, Ministry of Education of China, 400038 Chongqing, People's Republic of China

°Key Laboratory of High Altitude Medicine, PLA, 400038 Chongqing, People's Republic of China

Figure S1. The result of re-docking. Original conformation(orange), The conformation of the redocking(green)

Figure S2. The ADME/T results.

* Corresponding authors. Email: juanwang@cqut.edu.cn (Juan Wang)

[#] These authors contributed equally to this work.

Figure S3. 1b could bind closely with SLC7A11. (A-B) RMSD of α C for apo/1b /Erastin-protein systems. (C) RMSF of each residue for apo/1b/Erastin-protein systems. (D)RG values of apo/1b/Erastin-protein systems. (E) The number of hydrogen bonds for 1b-SLC7A11. (F) The number of hydrogen bonds for Erastin-SLC7A11.

Figure S4. 1b could bind closely with SLC7A11. (A-B) RMSD of α C for apo/1b /Erastin-protein systems. (C) RMSF of each residue for apo/1b/Erastin-protein systems. (D)RG values of apo/1b/Erastin-protein systems. (E) The number of hydrogen bonds for 1b-SLC7A11. (F) The number of hydrogen bonds for Erastin-SLC7A11.

system	Polar contributions		Non-polar contributions		
	ΔG_{ele}	$\Delta G_{ele,sol}$	ΔG_{vdw}	$\Delta G_{nonpol,sol}$	ΔG_{bind}
1b-SLC7A11	-23.133	36.688	-46.067	-5.671	-38.183
Erastin-SLC7A11	-2.667	18.139	-38.525	-4.928	-27.981

Figure S5. The free energy contribution of key residues. (A)1b-protein. (B) Erastin-protein.

system	Polar con	Polar contributions		Non-polar contributions	
	ΔG_{ele}	$\Delta G_{ele,sol}$	ΔG_{vdw}	$\Delta G_{nonpol,sol}$	ΔG_{bind}
1b-SLC7A11	-23.778	36.686	-46.129	-5.616	-38.837
Erastin-SLC7A11	-3.149	18.752	-39.117	-4.900	-28.414

(B)

(A)

Table S2. The binding free energy for 1b/Erastin-SLC7A11 (kcal/mol)

Figure S6. The free energy contribution of key residues. (A)1b-protein. (B) Erastin-protein.