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Experimental sections

Materials

I-octene was purchased from Aladdin Chemical Reagent Co., Ltd., 1-dodecene was
purchased from Beijing Yunbang Biotechnology Co., Ltd., 1-hexadecene and 1-octadecene were
purchased from Shanghai Merrill Chemical Technology Co., Ltd., 1-tetradecene and sepiolite
were purchased from Shanghai Maiklin biochemical Technology Co., Ltd. Silanes were purchased
from Anneji Chemical Co., Ltd and Aladdin Chemical Pharmaceutical Co., Ltd. The other
reagents were purchased from Sinopharmaceutical Group Chemical Reagent Co., Ltd., and the
references of Cu(HCOO),/sepiolite were prepared. All reagents were used without further
purification.

Synthesis

Synthesis of Cu(HCOOQO),

Ground a certain amount of copper sulfate pentahydrate and sodium bicarbonate in a mortar
and mix evenly. Under rapid stirring, the mixture was slowly added to the near-boiling distilled
water in small amounts for many times. At this time, the heating was stopped, and after the
mixture was added, it was heated for nearly boiling minutes. After static clarification, the
deionized water was washed to the solution without sulfate. Put the product prepared above into
the beaker, added distilled water, heated and stired to about 50 °C, added formic acid drop by drop
until the precipitation was completely dissolved, filtered while hot, the filtrate evaporates to about
1/3 of the original volume under the ventilation cabinet, cooled to room temperature,
decompression filtration, washing with ethanol, suction filtration, vacuum drying.

Synthesis of Cu(HCOQ),/sepiolite

According to the weight of copper accounting for 1% of the total mass of the catalyst, took a
certain amount of sepiolite and Cu(HCOOQ),, dissolved the weighed Cu(HCOO), in deionized
water, poured it into a flask containing sepiolite, stired at room temperature for 6 h, spun steam to
remove the solubilizer, and vacuumed 70 °C for 3 h.

Catalytic hydrosilylation

Using the reaction of 1-octene and diphenylsilane as the probe reaction, the main products

are the addition products of 1-octene and the hydrosilylation products of olefins and silane

(including a-addition products and B-addition products). To conduct a series of experiments.
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Dry magnetic agitator, cover the seal, stir the mixture at a certain temperature, separate the
solid and liquid by centrifugation, take a few drops of supernatant into the centrifuge tube, add

appropriate dichloride to dilute, get the sample, analyze and test it.



The conversion and selectivity of olefins were determined and quantified by GC analysis on
Agilent 7890B. The structure of the product was determined by GC-MS analysis on an Agilent
7890B-5977B instrument equipped with HPSMS column (30 mm x 0.25 mm x 0.25 pm). Gas
chromatography: trace DSQ GC column, resolution = 50:1, flow rate = 1.33 ml/min constant flow
rate, inlet temperature 260 °C, column temperature = 40 °C (hold for 1 minute), then 15°C min!
rises from 40 °C to 160 °C, then 20 °C min™! to 280 °C (keep for 9 minutes). "H NMR (400 MHz)

and >C NMR (100.6 MHz) spectra were recorded on Bruker Advance spectrometer.
Cycle reaction:

The experimental procedure of hydrosilylation reaction is the same as above. After the
reaction is finished, the supernatant is removed by centrifugation, and the catalyst containing the
reaction is obtained. Olefin and hydrosilane are added to the test tube again, and the reaction is
carried out under the condition of substrate dosage at the same temperature and time. The loop

experiment was carried out repeatedly according to the above steps.



Characterization sections

Fourier transform infrared spectroscopy (FTIR)
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Fig. S1 Fourier transform infrared spectra of Cu(HCOO),, Sepiolite and Cu(HCOO),/sepiolite

We compared the infrared spectra of Cu(HCOQO),/sepiolite with those of copper formate and
sepiolite, as shown in Fig. S1: the loaded sepiolite has the characteristic peak of copper formate:
There was a stretching vibration peak of saturated C-H bond in 2900cm!, an antisymmetric
stretching vibration peak of CO in 1600cm™!, and a symmetric stretching vibration of CO in 1300-
1400 cm!. It can be seen that the infrared spectra of Cu(HCOO),/sepiolite had the characteristic

peaks of sepiolite and copper formate, indicating the successful preparation of the catalyst.

Scanning electron microscopy (SEM)

Fig. S2 Scanning electron microscope images of sepiolite (a, d), Cu(HCOO),/sepiolite before reaction (b, e) and

Cu(HCOO)y/sepiolite after reaction(c, f)



Fig. S2 showed scanning electron microscope images of sepiolite and Cu(HCOO),/sepiolite.
As can be seen from Fig. S2-a and partially enlarged Fig. S2-b, the unloaded sepiolite showed a
typical chain-like fiber structure, and the structure of loaded sepiolite had no obvious change,
while the surface of sepiolite loaded with copper formate was covered with a white film, which
was slightly rough (Fig. S2 c-d). Fig. S2 (e-f) showed the scanning electron microscope image of
Cu(HCOO),/sepiolite after reaction. It was found that the catalytic agent after reaction still
retained the typical structure and morphology of sepiolite after solvent washing, filtration and
drying. At the same time, the original chain layer structure was the same as that of

Cu(HCOO),/sepiolite before reaction, covered by a layer of material.

Energy dispersive spectroscopy (EDS)
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Fig. S3 Energy dispersive spectroscopy of Cu(HCOO),/sepiolite before reaction (a-b) and Cu(HCOO),/sepiolite

after reaction(c-d)

EDS analysis (Fig. S3 a-d) showed that Cu was uniformly dispersed on the surface of the
prepared Cu(HCOO),/sepiolite catalyst. After the catalyst has been repeatedly run for several
times, the catalyst was filtered, washed and dried, and the energy spectrum of the catalyst was

scanned. It was found that the loaded Cu was still well retained.



X-ray photoelectron spectroscopy (XPS)
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Fig. S4 (a) wide survey XPS spectra of Cu(HCOO),/sepiolite XPS; (b) Cu 2p XPS spectra of fresh
Cu(HCOO),/sepiolite and recycled Cu(HCOO),/sepiolite; (c) Cu(HCOO), Cu 2p XPS spectra



We found that there was almost no change in the XPS spectra of the catalyst and the
unreacted catalyst after repeated reactions, and they all had elements such as C, O, Si, Cu, Mg and
so on. 284.8eV and 531.9 (532.1eV) corresponded to the binding energies of C 1s and O 1s, and
the peaks at 102.6eV (102.8eV) and 1304.4eV (1304.7eV) belonged to the binding energies of Si
2p and Mg 1s, respectively. Fig. S4-b showed the Cu 2p XPS spectra of Cu(HCOO),/sepiolite
complex before and after the reaction. The peaks at 933.0 eV and 962.7 eV (962.8 V)
corresponded to Cu 2ps,; and Cu 2p, 5, respectively, while 943.4 eV and 962.7 eV (962.8 eV) were
the characteristic satellite peaks of Cu 2p;/, and Cu 2p;/,, belonging to surface bivalent copper. At
the same time, we carried out XPS tests on a single copper formate, as shown in Fig. S4-c, and
found that the Cu(HCOO),/sepiolite (fresh and recycled) XPS spectra are basically consistent with
it. This result showed that we have successfully prepared Cu(HCOO),/sepiolite composites, and
the valence state of Cu in Cu(HCOO),/sepiolite remained unchanged after repeated reaction, and
the stability of the catalyst was good, which was consistent with the results of Fig. S1 (FTIR) and

Fig. S3 (EDS).

X-Ray Diffractometer
Fig. S5 showed the X-Ray Diffractometer spectra of Cu(HCOO),, Sepiolite and Cu(HCOO),/
sepiolite.
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Fig. S5 X-Ray Diffractometer spectra of Cu(HCOO),, Sepiolite and Cu(HCOO),/sepiolite



NMR data and spectra section

Hexyldiphenylsilane: 'H NMR (400 MHz, Chloroform-d) 6 7.59 (dd, J= 7.5, 1.7 Hz, 4H), 7.45 —
7.38 (m, 6H), 4.88 (t, J =3.7 Hz, 1H), 1.46 — 1.15 (m, 10H), 0.90 (m, 3H). 3C NMR (101 MHz,
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Octyldiphenysilane: 'H NMR (400 MHz, Chloroform-d) 6 7.65 (dd, J=11.5, 5.7 Hz, 4H), 7.44 — 7.39
(m, 6H), 4.92 (t, J =3.7 Hz, 1H), 1.52 — 1.20 (m, 14H), 0.93 (t, J = 6.8 Hz, 3H). *C NMR (101 MHz,
Chloroform-d) & 135.20, 134.79, 129.52, 128.01, 33.27, 31.96, 29.28, 24.47, 22.75, 14.19, 12.22.
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Dodecenediphenylsilane: 'H NMR (400 MHz, Chloroform-d) & 7.56 (dd, 4H), 7.38 — 7.33 (m, 6H),
4.85 (t, J=3.7 Hz, 1H), 1.20 (m, 22H), 0.88 (t, J = 6.7 Hz, 3H). *C NMR (101 MHz, Chloroform-d) &
135.18, 134.77, 134.40, 129.50, 127.98, 33.24, 31.99, 29.72, 29.60, 29.42, 29.28, 24.45, 22.76, 17.08,
14.19, 12.19.
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Tetradecenediphenylsilane: 'H NMR (400 MHz, Chloroform-d) & 7.59 (dd, J= 7.5, 1.7 Hz, 4H), 7.42
—7.36 (m, 6H), 4.88 (t, J=3.7 Hz, 1H), 1.28 (m, J = 11.2 Hz, 26H), 0.92 (t, 6.5 Hz, 3H).*C NMR (101
MHz, Chloroform-d) & 135.62, 135.53, 135.17, 134.76, 134.40, 129.49, 127.97, 33.23, 31.98, 29.74,
29.72,29.59,29.42,29.27, 24.44, 22.75, 14.18, 12.18.
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Hexadecyldiphenylsilane: 'H NMR (400 MHz, Chloroform-d) é ( ppm ): 7.71 (dd, J = 7.4, 1.9 Hz,
4H), 7.49 (m, J= 4.4 Hz, 6H), 5.04 (t, /= 3.7 Hz, 1H), 1.42 (m, J = 11.2 Hz, 30H), 1.05 (t, J = 6.8 Hz,
3H). 3C NMR (101 MHz, Chloroform-d) § (ppm): 135.24, 134.81, 129.55, 128.04, 33.33, 32.08, 29.86,
29.82,29.69, 29.53, 29.37, 24.53, 22.85, 14.27, 12.28.
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(3-(Oxiran-2-ylmethoxy)propyl)diphenylsilane : '"H NMR (400 MHz, Chloroform-d) & 7.56 (d, J =
7.6 Hz, 4H), 7.42-7.34 (m, 6H), 4.88 (t, J=3.7 Hz, 1H), 3.67 (dd, J=11.5, 3.0 Hz, 1H), 3.53 — 3.45 (m,
2H), 3.34 (dd, J=11.5, 5.8 Hz, 1H), 3.12 (m, 1H), 2.79 (t, J = 4.6 Hz, 1H), 2.59 (dd, J = 4.8, 2.7 Hz,
1H), 1.76 (m, 2H), 1.22 — 1.15 (m, 2H). *C NMR (101 MHz, Chloroform-d) 8 135.15, 134.22, 129.63,
128.03, 73.68, 71.42, 50.88, 44.38, 24.59, 8.39.
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3-(Diphenylsilyl)propyl acetate : 'H NMR (400 MHz, Chloroform-d) 8 7.55 (dd, J = 7.6, 1.6 Hz, 4H),
7.46 —7.29 (m, 6H), 4.88 (t, J=3.7 Hz, 1H), 4.06 (t, /= 6.8 Hz, 2H), 2.02 (s, 3H), 1.85 — 1.72 (m, 2H),
1.22 — 1.12 (m, 2H). 3C NMR (101 MHz, Chloroform-d) & 171.24, 135.18, 133.92, 129.82, 128.16,

66.60, 23.74, 21.09, 8.46.
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(2-Butoxyethyl)diphenylsilane: '"H NMR (400 MHz, Chloroform-d) 6 7.56 (d, J= 7.0 Hz, 4H), 7.36 (t,
J=17.7Hz, 6H), 490 (t,J= 3.4 Hz, 1H), 3.57 (t, J= 8.0 Hz, 2H), 3.33 (t, /= 6.6 Hz, 2H), 1.66 — 1.45
(m, 4H), 1.32 (m, J = 7.3 Hz, 2H), 0.88 (t, J = 7.3 Hz, 3H).*C NMR (101 MHz, Chloroform-d) &
135.23, 133.95, 129.71, 128.08, 70.38, 67.46, 31.94, 19.47, 14.30, 14.05.
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