Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic supporting information

Theoretical study and design of AIE-type TADF materials derivating from spatially conjugated [2.2]paracyclophane

Hao Tang,^a Jing Gao,^b Lan Zhang,^b Xudong Li,^a Yingchen Duan,^{*a} Lili Wen,^{*a} Xingman Liu^{*c} and Zhongmin Su^d

 ^a School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, P. R. China.
^b Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
^c School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
^d State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021,

China.

* Corresponding author email: duanyc122@nenu.edu.cn; wll@cust.edu.cn; liuxm2020@nxu.edu.cn

Fig. S1. The molecular interaction energies (a.u.) in different crystal packing structures predicted under the C2/C, P-1, P21, P21/C, P212121 and PBCA space groups (from left to right) for molecules **1-4** (a-d).

Fig. S2. A QM/MM model based on the simulated stacking structure of molecule 1 with the central molecule as the QM region.

Fig. S3. Frontier molecular orbital diagrams and the respective energy levels and energy gaps of 1-4 in aggregate state at the S_0 geometry.

Table S1 The transition densities of TSCT and TBCT for molecules 1-4 in isolated	(a)
and aggregated (b) states calculated by the IFCT method.	

	transition densities					
	isolated	molecule	monomer	in crystal		
	TSCT	TBCT	TSCT	TBCT		
1	78.4%	2.1%	92.3%	2.7%		
2	96.8%	1.8%	95.4%	2.4%		
3	3 96.4%	1.8%	95.6%	2.4%		
4	4 96.0%		94.4%	2.7%		

	1		2			3	4	
n	S_n	T _n	$\mathbf{S}_{\mathbf{n}}$	T _n	S_n	T_n	$\mathbf{S}_{\mathbf{n}}$	T_n
1	3.1495	2.5585	2.7740	2.5532	2.5149	2.4879	2.7212	2.5393
2	3.4243	2.8902	3.3716	2.7426	3.1086	2.5543	3.3191	2.6935
3	3.4746	3.1021	3.4072	2.9417	3.4418	2.9342	3.4342	2.9494
4	3.5878	3.1736	3.4598	3.0601	3.5123	3.0028	3.5192	3.0984
5	3.6804	3.2842	3.5806	3.1049	3.5559	3.0994	3.5943	3.2061
6	3.6913	3.4006	3.6870	3.3509	3.5988	3.2049	3.7097	3.4110
7	3.7323	3.4093	3.7802	3.3668	3.7183	3.2887	3.7970	3.4641
8	3.9500	3.4528	3.9041	3.4535	3.7989	3.4070	4.0445	3.5771
9	3.9916	3.5387	3.9497	3.4963	3.9895	3.5651	4.1066	3.5986
10	4.0439	3.5794	4.0231	3.5133	4.0091	3.5894	4.1499	3.6235
11		3.6788		3.5670		3.6206		3.7077
12		3.6804		3.5949		3.6520		3.8436
13		3.7331		3.7280		3.7623		3.8677
14		3.8118		3.9024		3.8251		3.9251
15		3.9038		3.9398		3.8867		3.9633
16		3.9734		3.9608		3.9547		4.0230
17		4.0291		4.0104		3.9880		4.0325
18		4.0376		4.0216		4.0200		4.0868
19		4.0580		4.0483		4.0294		4.1194
20		4.0881		4.0867		4.0609		4.1298

Table S2 Calculated singlet and triplet excitation energies (eV) at the optimized S_0 geometries for isolated 1-4.

				1				
T _n	$\Delta E(S_2-T_n)$	$\langle S_2 \boldsymbol{H}_{SOC} T_n \rangle$	$k_{\rm ISC}$	T _n	$\Delta E(S_3-T_n)$	$\langle S_3 H_{SOC} T_n \rangle$	k _{ISC}	
T ₃	0.3222	0.44	1.54×10 ⁷	T_4	0.3010	1.60	1.95 ×10 ⁸	
T ₄	0.2507	2.13	3.05×10 ⁸	T ₅	0.1904	0.97	5.12×10 ⁷	
T ₅	0.1401	0.74	2.33×10 ⁷	T ₆	0.0740	0.75	1.52×10 ⁷	
T ₆	0.0237	0.28	1.30×10^{6}	T_7	0.0653	0.08	1.61×10 ⁵	
T_7	0.0150	0.16	3.83×10 ⁵	T_8	0.0218	0.61	6.04×10 ⁶	
T_8	-0.0285	0.42	1.89×10 ⁶	T9	-0.0641	0.01	1.74×10^{3}	
T9	-0.1144	0.02	1.09×10 ⁴	T ₁₀	-0.1048	1.24	3.91 ×10 ⁷	
				2				
T_n	$\Delta E(S_2-T_n)$	$\langle S_2 \boldsymbol{H}_{SOC} T_n \rangle$	$k_{\rm ISC}$	T_n	$\Delta E(\mathbf{S}_4\text{-}\mathbf{T}_n)$	$\langle S_4 \boldsymbol{H}_{SOC} T_n \rangle$	$k_{\rm ISC}$	
T_4	0.3115	4.80	4.75×10 ⁹	T_6	0.1089	0.42	3.52×10^{7}	
T ₅	0.2667	0.48	4.70×10 ⁷	T_7	0.0930	0.02	4.46×10 ⁴	
T ₆	0.0207	0.92	2.91×10 ⁷	T_8	0.0063	0.72	1.21×10 ⁷	
T_7	0.0048	0.02	8.98×10 ³	T9	-0.0365	0.76	8.93×10 ⁷	
T_8	-0.0819	1.06	2.08×10 ⁸	T ₁₀	-0.0535	0.62	6.43×10 ⁷	
				T ₁₁	-0.1072	0.09	1.61×10 ⁶	
3								
T_n	$\Delta E(\mathbf{S}_3\text{-}\mathbf{T}_n)$	$\langle S_3 \boldsymbol{H}_{SOC} T_n \rangle$	$k_{\rm ISC}$	T_n	$\Delta E(\mathbf{S}_4\text{-}\mathbf{T}_n)$	$\langle S_4 \boldsymbol{H}_{SOC} T_n \rangle$	$k_{\rm ISC}$	
T ₅	0.3424	0.13	7.16×10 ⁵	T_6	0.3074	0.48	9.75×10^{6}	
T_6	0.2369	0.26	2.85×10 ⁶	T_7	0.2236	0.94	3.72×10 ⁷	
T ₇	0.1531	1.30	7.07×10 ⁷	T ₈	0.1053	0.18	1.35×10^{6}	
T_8	0.0348	0.24	2.37×10^{6}	T 9	-0.0528	0.66	1.87×10 ⁷	

Table S3 Energy differences $[\Delta E(S_n-T_1)/eV]$ between the singlet states with relatively large oscillator strength and their neighboring triplets states (T_n) and the corresponding SOC matrix elements $(\langle S|H_{SOC}|T_n\rangle/cm^{-1})$ and ISC rate (k_{ISC}/s^{-1}) for isolated 1-4.

T9	-0.1233	0.90	3.49×10 ⁷	T_{10}	-0.0771	0.91	3.56×10 ⁷
				T ₁₁	-0.1083	0.73	2.29×10 ⁷
				4			
T _n	$\Delta E(S_4-T_n)$	$\langle S_4 \boldsymbol{H}_{SOC} T_n \rangle$	$k_{\rm ISC}$				
T ₅	0.3131	0.17	6.61×10 ⁶				
T_6	0.1082	0.79	1.87×10 ⁸				
T_7	0.0551	0.19	8.47×10 ⁶				
T_8	-0.0579	1.15	3.64×10 ⁸				
T9	-0.0794	0.38	4.09×10 ⁷				
T_{10}	-0.1043	0.11	3.44×10^{6}				