Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting information

The effect of calcination temperature on the structure and activity

relationship of V/Ti catalyst for NH₃-SCR

Yingjie Li*ab

^a Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, P. R. China (Email: <u>yli@eitech.edu.cn</u>)

^b Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;

Methods

The reaction rate r was calculated according to the following equation:

$$r(mol \ s^{-1} \ m^{-2}) = \frac{\left(\frac{P \times V}{R \times T}\right) \times X_{NO_x}}{m_{cat} \times S_{BET}}$$
(1)

In the above equation, P(Pa) is the standard atmospheric pressure (1.01×10⁵ Pa), $V(m^3/s)$ is the NO flow volume,

R is the proportional constant (8.314 J mol⁻¹ K⁻¹), T(K) is the reaction temperature (298.15 K), X_{NO_x} is the NO_x conversion, $m_{cat}(g)$ is the mass of the catalysts, and S_{BET} is the BET specific surface area.

Figure S1 NH₃-SCR activity (a) and N₂ selectivity (b) over 1wt% V₂O₅/TiO₂ and 1wt% V₂O₅-10%WO₃-TiO₂ catalysts under the calcination temperature of 500 °C and 800 °C. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5\%$, GHSV=200,000 h⁻¹.

Figure S2 N₂ selectivity in NH₃-SCR reaction as function of temperature in the feed gas of 500 ml·min⁻¹ total rate over the V/Ti catalysts. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5\%$, GHSV=100,000 h⁻¹.

Figure S3 The TEM images (right), and HRTEM images (left) at 100nm and 5nm of catalysts. V/Ti-500 (a); V/Ti-600 (b); V/Ti-700 (c); V/Ti-800 (d); V/Ti-850 (e).

Figure S 4 The mapping images at 250nm of catalysts blue as V, green as O, and red as Ti. V/Ti-500 (a); V/Ti-600 (b); V/Ti-700 (c); V/Ti-800 (d); V/Ti-850 (e).

Figure S5 The mapping images at 100nm of catalysts blue as V, green as O, and red as Ti. V/Ti-500 (a); V/Ti-600 (b); V/Ti-700 (c); V/Ti-800 (d); V/Ti-850 (e).

As shown in the Figure S4 and Figure S5, the mapping images of V/Ti catalysts in different

calcination, which indicate that the V, O, Ti distribution uniformly.

Figure S6 SEM image of V/Ti-500 (a) , V/Ti-600 (b) , V/Ti-700 (c), V/Ti-800 (d), V/Ti-850 (e).

Figure S7 NH₃-TPD profiles for V/Ti catalysts (a), the NH₃ adsorption per unit specific surface area (b).

Figure S6 illustrates the NH₃-TPD profiles of the V/Ti catalysts. NH₃ adsorption and desorption are crucial for the catalytic cycle. It was apparent that the amount of NH₃ adsorption decreased with the calcination temperature increase. To eliminate the effect of the specific surface area, the content of NH₃ desorption per specific surface area was obtained (**Figure S6b**), which is increase with the calcination temperature increase from 500 to 700 °C, then decrease from 800 to 850 °C. V/Ti-700 catalyst reached the maximum acid amount per specific surface area, while the low-temperature NH₃-SCR activity of V/Ti-700 was poor. V/Ti-800 catalyst with the lower the amount of NH₃ adsorption, exhibited the excellent low-temperature NH₃-SCR activity. This indicated that the amount of NH₃ adsorption hardly effect the NH₃-SCR activity at low temperature.

Figure S8 The intensity of the hydroxyl group over TiO_2 support and V_2O_5/TiO_2 catalysts under different calcination temperatures and the OH deposited by V species was calculated by the difference between the hydroxyl group on TiO_2 and V/Ti catalysts. The intensity of hydroxyl strength of the V/Ti-500 catalyst was set as 100%.

Table S1. surface area, and the corresponding concentration ratios over different calcination

Sample	BET surface	Pore volume (cm ³ /g) ^a	Pore size (nm) ^b	Particle size	VO_x surface density (VO_x	Surface concentration (at-) ^d	Bulk concentration (at-) °
	area (III-/g)			(1111)-		V/Ti	V/Ti
V/Ti-500	74.1	0.33	19.0	17.3	0.89	0.0249	0.0066
V/Ti-600	54.3	0.32	23.9	25.6	1.22	0.0341	0.0064
V/Ti-700	36.0	0.24	30.8	33.2	1.84	0.0677	0.0063
V/Ti-800	12.1	0.06	20.1	86.6	5.47	0.1279	0.0064
V/Ti-850	9.0	0.02	14.1	137.4	7.35	0.1138	0.0062

temperatures V/Ti catalysts.

^a BJH desorption pore volume

^b BJH adsorption pore size

° measured by SEM average particle size

^d calculated by XPS

e calculated by XRF

 Table S2. the corresponding concentration ratios over different calcination temperature V/Ti

 catalysts according to XRF results.

Cl.	Bulk concentration (%) ^b								
Sample	V_2O_5	TiO ₂	P_2O_5	Al_2O_3	SiO ₂	CaO	Nb_2O_5	SO_3	
V/Ti-500	0.74	97.51	0.35	0.28	0.17	0.14	0.14	0.49	
V/Ti-600	0.71	97.49	0.33	0.07	0.23	0.14	0.13	0.41	
V/Ti-700	0.71	98.12	0.35	0.19	0.13	0.13	0.13	0.03	
V/Ti-800	0.72	98.22	0.37	-	0.29	0.16	0.14	-	
V/Ti-850	0.70	98.34	0.33	0.12	0.16	0.11	0.14	-	

Sample	$(V^{4+}+V^{3+})/V^{5+}$	$O_{\alpha} / \left(O_{\alpha} + O_{\beta} + O_{\gamma} \right)$	V 2p	O 1s	Ti 2p
V/Ti-500	5.90	12.5	515.9	529.9	457.6
V/Ti-600	4.71	11.7	515.9	529.9	457.7
V/Ti-700	2.07	9.2	516.2	530.1	458.3
V/Ti-800	0.88	15.7	516.6	529.8	458.5
V/Ti-850	0.57	18.8	516.8	530.0	458.8

Table S3. The XPS results of V/Ti catalysts under different calcination temperatures.

Sampl	Reaction	crystallite	Monomeri	Dolumonio	H ₂ consumption pre unit of specific	VO _x	Le
es	rate	size	c	Polymeric	surface area (μ mol/m ²)	density	wis
V/Ti-	1.6	17.0	95129.8	50850.0	7.6	0.9	5.9
500							
V/Ti-	3.3	25.0	148562.0	69207.0	8.1	1.2	5.2
600							
V/Ti-	3.3	29.0	181718.0	56969.0	4.8	1.8	8.0
700							
V/Ti-	31.1	48.0	165684.7	144267.0	11.3	5.5	1.7
800							
V/Ti-	20.7	106.0	14774.8	36517.0	10.0	7.3	0.7
850							

Table S4. The results of the characterization and SCR reaction rate.

Samp	Reactio	crystallit	Mono	Polym	H ₂ consumption pre unit of specific	VO _x	Intensity of
les	n rate	e size	meric	eric	surface area (μ mol/m ²)	density	Lewis acid
V/Ti- 500	0.05	0.16	0.52	0.35	0.67	0.12	0.74
V/Ti- 600	0.11	0.24	0.82	0.48	0.72	0.17	0.64
V/Ti- 700	0.11	0.27	1.00	0.39	0.42	0.25	1.00
V/Ti- 800	1.00	0.45	0.91	1.00	1.00	0.74	0.21
V/Ti- 850	0.67	1.00	0.08	0.25	0.88	1.00	0.09

Table S5. The maximum value normalization of the characterization and SCR reaction rate.