Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information (SI)

Benzimidazole Based Low-Sensitivity and Heat-Resistant Energetic

Materials: Design and Synthesis

Ying Liang,^a Xian-Kun Hu,^a Zhang-Lei Yang,^a Miao-Miao Liu,^a Yao Zhang,^a Jin-Ting Wu,^a Jian-Guo Zhang,^b

Ting-Xing Zhao,*^a Shan-Hu Sun,*^a and Shu-Min Wang*^a

^aSchool of Materials and Chemistry, Southwest University of Science and Technology, Mianyang

621010, China

^bState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing

100081, China

E-mail: shumin_kxwang@163.com

shanhusun@126.com

tingxingzhao@swust.edu.cn

Content

1. Computational and experimental details	3
2. The crystallographic data	8
3. ¹ H, ¹³ C NMR, MS and IR spectra of 2, 3, 4, 5 and DADNBI	10
4. TG-DSC curves of new compounds	19
-	

1. Computational and experimental details

Computational details

The enthalpy of formation of DADNBI and DNBI were directly calculated by the Gaussian 09 program. Gas phase heats of formation of DADNBI and DNBI were computed on an isodesmic reaction (Scheme S1). The enthalpy of reaction was carried out by combining the B3LYP/6-311G^{**} energy difference for the reactions, the total energy (E_0), the scaled zero-point energies (ZPE), values of thermal correction (H_T), and other thermal factors. All optimized structures were characterized to be minima true local energy state without virtual frequencies on the potential energy surface. The enthalpy of formation of the substance at 298 K was calculated according to equation (1) and quation (2).^{1,2}

$$\Delta H_{298}^0(g) = \Delta E_0 + \Delta ZPE + \Delta H_T^0 + \Delta nRT = \sum \Delta H_{f,P} - \sum \Delta H_{f,R}$$
⁽¹⁾

$$\Delta H^0_{298}(s) = \Delta H^0_{298}(g) - \Delta H^0_{298}(sub)$$
⁽²⁾

Scheme S1 Isodesmic reactions to compute the HOF.

Table S1 Calculated total energy (E_0), zero-point energy (ZPE), thermal correctior(H_T), and enthalpy of formation (HOF) of

reference compounds

compound	E ₀ (a.u.)	ZPE (a.u.)	H _T (a.u.)	HOF (KJ∙mol⁻¹)
4,6-diamine-5,7-dinitro-1 <i>H</i> -benzo[<i>d</i>]imidazole	-899.5552224	0.157512	0.013961	26.8
5,7-dinitro-1 <i>H</i> -benzo[<i>d</i>]imidazole	-788.80728	0.122100	0.011944	105.4
1 <i>H</i> -benzo[<i>d</i>]imidazole	-379.960667	0.118009	0.006991	181.7
CH ₄	-40.5337483	0.044604	0.003812	-74.6
CH ₃ NH ₂	-245.0816727	0.049631	0.004419	-23
CH ₃ NO ₂	-95.8884391	0.06381	0.004358	-74.3

Density is another important factor affecting the detonation performance of compounds, which was obtained by the improved density equation.³ Among them α , β , and γ are the fitting parameters used when calculating the density, and $u\sigma^2_{Tot}$ represents the electrostatic interaction on the surface of the energetic molecule.⁴

$$\rho = \alpha(\frac{M}{V(0.001)}) + \beta(\upsilon\sigma_{Tot}^2)\gamma$$
(3)

Detonation performances of the related compound here were calculated using Kamlet-Jacbos (K-J) equations,⁵⁻⁷

$$D = 1.01(N\bar{M}^{1/2}Q^{1/2})^{1/2}(1+1.30\rho)$$
(4)

$$P = 1.558\rho^2 N \bar{M}^{1/2} Q^{1/2} \tag{5}$$

where *P* represents the detonation pressure (GPa); *D* is the detonation velocity (km·s⁻¹); *N* is the moles of detonation gases per gram explosive; *M* is the average molecular weight of these gases; *Q* is the chemical energy of detonation (kJ·g⁻¹); and ρ replaced by the density of explosive (g·cm⁻³).

This paper calculated the $h_{50\%}$ at 2.5 kg through theoretical computations (B3LYP/6-31G) and selected the balance parameter model to estimate the impact sensitivity $h_{50\%}$.⁸

$$h_{50\%} = a_1 + a_2 \exp(a_3 \upsilon)$$
 (6)

In formula (6), a₁, a₂, and a₃ are fitting constants, and v is the calculated balance of charges.

Experimental section

Caution! Although no explosion is observed with the reagents used, intermediates prepared, and final products during the experiments, the compounds reported in this study are energetic and all operations should be performed in a fume hood equipped with explosion-proof glass, wearing a mask and gloves.

General methods

The main pharmaceuticals, *o*-nitroaniline with a purity of 99% and *N*-chlorosuccinimide with a purity of 98%, were purchased from Macklin; tin (II) chloride dihydrate with a purity of 98% was purchased from Aladdin; other reagents such as sodium hydroxide, anhydrous sodium carbonate, concentrated hydrochloric acid, concentrated sulfuric acid, fuming nitric acid, and other solvents were all analytical grade reagents purchased from chron chemicals. All reagents were analytical grade and were used as received. Single crystal X-ray diffraction was carried out on a Bruker D8 VENTURE diffractometer using Mo-K_{α} radiation ($\lambda = 0.71073$ Å). Integration and scaling of intensity data was performed using the SAINT program. Data were corrected for the effects of absorption using SADABS. The structures were solved by direct method and refined with full-matrix least-squares technique using SHELX-2014 software. Non-hydrogen atoms were refined with anisotropic displacement parameters, and hydrogen atoms were placed in calculated positions and refined with a riding model. ¹H and ¹³C NMR spectra were recorded on a 600 MHz (Bruker Avance 600) NMR spectrometer operating at 600 and 150 MHz, respectively. The decomposition points

were obtained on a Mettler Toledo TGA/DSC 3+ simultaneous thermal analyzer at a heating rate of 5, 10, 15, and 20 °C·min⁻¹, respectively. IR spectra were recorded on a Shimadzu Corporation-UV-3150 UV-vis spectrophotometer as thin films by using KBr plates.

Synthesis

Scheme S2 Synthesis route of DADNBI.

2,4-dichloro-6-nitroaniline (**2**).⁹ *N*-chlorosuccinimide (10.68 g, 79.98 mmol) was dissolved in a mixed solution of dichloromethane (90 mL) and methanol (45 mL), and *o*-nitroaniline (2.76 g, 19.98 mmol) was added, and stirred at 60 °C for 16 h. The reaction was stopped, poured into water, extracted with dichloromethane, and the solvent was removed by vacuum distillation. The product was recrystallized from ethanol to obtain pure product **2** as a yellow solid (3.25 g, 78.5%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.005 (d, *J* = 2.4 Hz, 1H), 7.838 (d, *J* = 3 Hz, 1H), 7.378 (s, 2H) ppm. ESI-MS: m/z calcd for [M-H]⁻ : 204.96, found: 205.05. IR (KBr, cm⁻¹): 3850, 3740, 3474, 3363, 2974, 2934, 2346, 2304, 1632, 1508, 1453, 1355, 1258, 1139, 1050, 877, 760, 725, 603, 554.

3, **5**-dichloro-1,2-diaminobenzene (3). 2 (1 g, 4.83 mmol) was dissolved in ethanol (60 mL), SnCl₂·2H₂O (8.8 g, 39.00 mmol) was added, 3 drops of HCl were added, and the mixture was stirred at 60 °C for 3 h. The reaction was stopped, cooled to room temperature, pH was adjusted to 10 with 1 M NaOH, filtered through diatomaceous earth, the solvent was removed by vacuum distillation, extracted with ethyl acetate, and purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 3:1) to obtain pure product **3** as a brown solid (0.73 g, 85.4%). ¹H NMR (600 MHz, DMSO-*d₆*): δ = 6.543 (d, *J* = 2.4 Hz, 1H), 6.505 (d, *J* = 2.4 Hz, 1H), 4.954 (s, 4H) ppm. ¹³C NMR (150 MHz, DMSO-*d₆*): δ = 137.99, 130.61, 120.66, 117.87, 115.92, 112.18 ppm. ESI-MS: m/z calcd for [M+H]⁺ : 177.00, found: 177.05. IR (KBr, cm⁻¹): 3347, 2932, 2304, 1628, 1578, 1481, 1421, 1288, 1226, 1062, 931, 846, 721, 646, 571.

5,7-dichloro-1H-benzo[d]imidazole (4). 3 (0.8 g, 4.52 mmol) was dissolved in formic acid (120 mL), 3 drops of HCl were added, and the mixture was stirred at 120 °C for 4 h. The reaction was stopped, cooled to room temperature, pH was adjusted to 5

with 1 M NaOH, and the solid was collected by filtration, dried in a vacuum oven at 45 °C, and purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 1:3) to obtain pure product **4** as a white solid (0.73 g, 86.7%). ¹H NMR (600 MHz, DMSO- d_6): δ = 12.986 (s, 1H), 8.368 (s, 1H), 7.614 (s, 1H), 7.315 (s, 1H) ppm. ¹³C NMR (150 MHz, DMSO- d_6): δ = 144.60, 127.02, 121.79 ppm. ESI-MS: m/z calcd for [M-H]⁻: 184.97, found: 184.95. IR (KBr, cm⁻¹): 3422, 3090, 3030, 2956, 2865, 2762, 2623, 1754, 1620, 1577, 1479, 1411, 1337, 1287, 1187, 1153, 1074, 980, 945, 838, 760, 627, 591, 505.

5,7-dichloro-4,6-dinitro-1H-benzo[d]imidazole (5). 4 (0.8 g, 4.28 mmol) was dissolved in concentrated sulfuric acid (14 mL), placed in an ice bath, fuming nitric acid (14 mL) was added dropwise, the ice bath was removed and switched to the oil bath, and stirred at 120 °C for 4 h. The reaction was stopped, cooled to room temperature, poured into ice water, and the solid was collected by filtration to obtain pure product **5** as a white solid (1.12 g, 94.4%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 14.176 (s, 1H), 8.819 (s, 1H) ppm. ESI-MS: m/z calcd for [M-H]⁻: 274.94, found: 274.95. IR (KBr, cm⁻¹): 3088, 1619, 1559, 1482, 1394, 1341, 1282, 1206, 1133, 1040, 942, 839, 793, 737, 703, 632, 602, 551, 508.

5,7-diamine-4,6-dinitro-1H-benzo[d]imidazole (DADNBI). Anhydrous sodium carbonate (Na₂CO₃) (0.08 g, 0.75 mmol) was added to a solution of **5** (0.6 g, 2.17 mmol) in DMF (5 mL) and NH₃·H₂O (1 mL). The reaction mixture was stirred at 125 °C for 48 h. During the reaction, 1 mL NH₃·H₂O was added every 6 h. Then cool to ambient temperature. The precipitate was obtained by filtration, washed with a large amount of water and ethanol, and dried in vacuum to obtain pure product DADNBI as an orange yellow powder (0.45 g, 86.5%). ¹H NMR (600 MHz, DMSO-*d*₆): δ = 12.931 (s, 1H), 10.092 (s, 2H), 8.996-8.807 (m, 2H), 8.013 (s, 1H) ppm. ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 147.46, 147.37, 139.87, 130.31, 122.78, 115.78, 110.33 ppm. ESI-MS: m/z calcd for [M-H]⁻: 237.04, found: 237.10. IR (KBr, cm⁻¹): 3333, 2346, 1611, 1567, 1528, 1388, 1332, 1266, 1228, 1172, 1085, 942, 880, 783, 696, 624.

References

- 1 M. S. Westwell, M. S. Searle, and D. H. Williams, Empirical correlations between thermodynamic properties and intermolecular forces. J. Am. Chem. Soc., 1995, **117**, 5013-5015.
- 2 P. Jimenez, M. V. Roux, C Turrion, and F. Gomis, Thermochemical properties of *N*-heterocyclic compounds I. Enthalpies of combustion, vapour pressures and enthalpies of sublimation, and enthalpies of formation of pyrazole, imidazole, indazole, and benzimidazole. *J. Chem. Thermodyn.*, 1987, **19**, 985-992.
- 3 F. Wang, G. Wang, H. Du, J. Zhang, and X. Gong, Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines. *J. Phys. Chem. A*, 2011, **115**, 13858-13864.
- 4 P. Politzer, J. Martinez, J. S. Murray, M. C. Concha, and A. Toro-Labbé, An electrostatic interaction correction for improved crystal density prediction. *Mol. Phys.*, 2009, **107**, 2095-2101.
- 5 Q. Lin, Y. Li, Y. Li, Z. Wang, W. Liu, C. Qi, and S. Pang, Energetic salts based on 1-amino-1,2,3-triazole and 3-methyl-1amino-1,2,3-triazole. J. Mater. Chem., 2012, **22**, 666-674.
- 6 L. Zeng, J. Li, C. Qiao, Y. Jiang, J. Wu, H. Li, and J. Zhang, Combination multi-nitrogen with high heat of formation: theoretical studies on the performance of bridged 1,2,4,5-tetrazine derivatives. J. Mol. Model., 2022, 28, 1-15.

- 7 Y. Jiang, Y. Luo, J. Liu, L. Zhang, J. Wu, H. Li, and J. Zhang, Chemical study of fused ring tetrazine derivatives as possible high energy density materials (HEDMs). *J. Mol. Model.*, 2021, **27**, 267.
- 8 B. M. Rice, J. J. Hare, A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. *J. Phys. Chem. A*, 2002, **106**, 1770-1783.
- 9 B. Misal, A. Palav, P. Ganwir, G. Chaturbhuj, and Activator free, expeditious and eco-friendly chlorination of activated arenes by *N*-chloro-*N*-(phenylsulfonyl)benzene sulfonamide (NCBSI). *Tetrahedron Lett.*, 2020, **63**, 152689.

2. The crystallographic data

05-S1-C8

	DADNBI·DMSO	
Empirical formula	$C_9H_{12}N_6O_5S$	
Formula weight	316.31	
Temperature/K	150.0(1)	
Crystal system	monoclinic	
Space group	C2/c	
a/Å	27.756(3)	
b/Å	4.6794(5)	
c/Å	19.632(2)	
α/°	90	
β/°	90.257(4)	
γ/°	90	
Volume/Å ³	2549.8(5)	
Z	8	
ρ _{calc} g/cm ³	1.648	
μ/mm ⁻¹	0.290	
F(000)	1312.0	
Crystal size/mm ³	0.26 × 0.25 × 0.21	
Radiation	ΜοΚα (λ = 0.71073)	
20 range for data collection/°	4.15 to 52.844	
Index ranges	-33 ≤ h ≤ 34, -5 ≤ k ≤ 5, -24 ≤ l ≤ 22	
Reflections collected	8229	
Independent reflections	2581 [R _{int} = 0.0984, R _{sigma} = 0.1032]	
Data/restraints/parameters	2581/178/204	
Goodness-of-fit on F ²	1.050	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0731$, $wR_2 = 0.1322$	
Final R indexes [all data]	$R_1 = 0.1382$, $wR_2 = 0.1669$	
Largest diff. peak/hole / e Å ⁻³	0.37/-0.41	
CCDC	2333741	

Table S2 Crystallographic data for DADNBI·DMSO

Table S3 Bond distance of compound DADNBI-DMSO

parameter	Å	parameter	Å	
S1-O5	1.515(4)	N4-C4	1.393(5)	
S1-C8	1.759(4)	N4-C7	1.311(6)	
S1-C9	1.759(4)	N5-C5	1.320(6)	
01-N2	1.284(5)	N6-C6	1.420(6)	
O2-N2	1.262(5)	C1-C2	1.440(6)	
O3-N6	1.231(5)	C1-C6	1.438(6)	
O4-N6	1.254(5)	C2-C3	1.421(6)	
05-S1A	1.61(2)	C3-C4	1.370(6)	
N1-C1	1.331(5)	C4-C5	1.419(6)	
N2-C2	1.374(6)	C5-C6	1.435(6)	
N3-C3	1.366(6)	S1A-C8A	1.759(4)	
N3-C7	1.360(6)	S1A-C9A	1.759(4)	
Table S4 Bond angle of compound DADNBI-DMSO				
parameter	٥	parameter	o	

N3-C3-C2

106.8(3)

132.5(4)

parameter	٥	parameter	٥
O5-S1-C9	105.5(3)	N3-C3-C4	105.5(4)
C9-S1-C8	98.4(3)	C4-C3-C2	122.0(4)
O1-N2-C2	122.1(4)	N4-C4-C5	125.2(5)
02-N2-01	118.6(4)	C3-C4-N4	111.3(4)
O2-N2-C2	119.3(4)	C3-C4-C5	123.5(4)
C7-N3-C3	106.4(4)	N5-C5-C4	118.4(4)
C7-N4-C4	102.9(4)	N5-C5-C6	126.3(4)
O3-N6-O4	119.5(4)	C4-C5-C6	115.3(4)
O3-N6-C6	120.3(4)	N6-C6-C1	119.4(4)
O4-N6-C6	120.2(4)	N6-C6-C5	118.0(4)
N1-C1-C2	118.2(4)	C5-C6-C1	122.6(4)
N1-C1-C6	123.0(4)	N4-C7-N3	113.9(4)
C6-C1-C2	118.8(4)	05-S1A-C8A	86(3)
N2-C2-C1	123.3(4)	O5-S1A-C9A	129(3)
N2-C2-C3	119.0(4)	08A-S1A-C9A	107(3)
C3-C2-C1	117.6(4)		

Table S5 Hydrogen atom coordinates (Å×10⁴) and isotropic displacement parameters (Å²×10³) for DADNBI·DMSO.

, 0				
Atom	х	У	Z	U(eq)
H1A	6308	3166	2278	35
H1B	6009	5218	2705	35
H3	6276	4919	5334	31
H5A	7514	-2675	4270	33
H5B	7498	-2996	3498	33
H7	6825	1990	5981	32
H8A	5069	6655	5362	58
H8B	4803	9221	5746	58
H8C	4951	6397	6156	58
H9A	5374	9070	7103	71
H9B	5193	11967	6752	71
H9C	5744	11647	6983	71
H8AA	5199	10331	5591	58
H8AB	4938	7307	5499	58
H8AC	5490	7672	5287	58
H9AA	5498	10999	7182	71
H9AB	5031	9138	7358	71
H9AC	5019	11334	6733	71

3. ¹H, ¹³C NMR, MS and IR spectra of 2, 3, 4, 5 and DADNBI

Fig. S10 Mass spectra (MS) of 3.

4. TG-DSC curves of DADNB

Fig. S19 (a) DSC curves of DADNBI (5 °C·min⁻¹). (b) DSC curves of DADNBI (10 °C·min⁻¹). (c) DSC curves of DADNBI (15 °C·min⁻¹). (d) DSC curves of DADNBI (20 °C·min⁻¹).

Fig. S20 (a) TG-DTG curves of DADNBI (5 °C·min⁻¹). (b) TG-DTG curves of DADNBI (10 °C·min⁻¹). (c) TG-DTG curves of DADNBI (15 °C·min⁻¹). (d) TG-DTG curves of DADNBI (20 °C·min⁻¹).