Supplementary Information for:

Porous organic polymers marry with chelating agents: A facile strategy to develop effective and multi-purpose absorbents for wastewater treatment

Jiyong Zhou ^{†1}, Yunze Chen ^{†2}, Liping Huang ¹, Lin Sun ¹, Jianhua Zhang^{3,4,*}

1 CNOOC Ener Tech-Drilling & Production Co., Tianjin 300452, China

2 CNOOC Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin 300131, China

3 Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.

4 Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China.

† Jiyong Zhou and Yunze Chen contributed equally to this work.

Corresponding author: Jianhua Zhang, *E-mail*: jhuazhang@tju.edu.cn

Fig. S1 Preparation progress of CPOP-HEDTA

Fig. S2 SEM and elemental mapping image of Sulfur in CPOP-HEDTA before adsorption.

Fig. S3 Elovich model for MB adsorption by CPOP-HEDTA

Fig. S4 Intraparticle diffusion model for MB adsorption by CPOP-HEDTA

Fig. S5 Tempkin isotherm for MB adsorption by CPOP-HEDTA

Fig. S6 R^L with distinct initial concentrations for MB adsorption by CPOP-HEDTA

Fig. S7 Ball-and-stick molecule model of (A) methylene blue (B) rhodamine B (C) methyl orange

Fig. S8 Elovich model for Fe3+ adsorption by CPOP-HEDTA

Fig. S9 Intraparticle diffusion model for Fe³⁺ adsorption by CPOP-HEDTA

Fig. S10 Synchronous adsorption capacities of MB and Fe³⁺ on CPOP-HEDTA

The adsorption kinetics models were described as follows:

Pseudo-first-order kinetics model: $\ln(q_e - q_t) = \ln q_e - k_1 t$ * MERGEFORMAT (Equation.

Pseudo-second-order kinetics model:
$$
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \setminus^*
$$
 MERGEFORMAT (Equation.S2)

Elovich kinetics model:
$$
q_t = \frac{1}{\beta} \ln(\alpha \beta) + \frac{1}{\beta} \ln t
$$
^{*} MERGEFORMAT (Equation.S3)

Intraparticle diffusion kinetics model: $q_t = k_t t^{0.5} + C_i$ ^{*} MERGEFORMAT (Equation.S4)

Where, q_t (mg/g) and q_e (mg/g) are the adsorption capacity at a given time and at equilibrium respectively. k_1 (min⁻¹) and k_2 (g mg⁻¹ min⁻¹) are the rate constants of pseudo-first-order and pseudo-second-order kinetics respectively. α (mg g⁻¹ min⁻¹) is the initial adsorption rate in the chemisorption. β (g/mg) is a parameter that demonstrates the relation between the degree of surface coverage and activation energy in the chemisorption. k_i (mg g⁻¹ min^{-0.5}) is the constant of intraparticle diffusion. C_i is the constant of boundary layer affects and the adsorption kinetics is controlled by intraparticle diffusion diminutively when $C_i = 0$.

The adsorption isotherms were described as follows:

Langmuir isotherm:
$$
\frac{C_e}{q_e} = \frac{1}{k_L q_m}
$$
 $\frac{\sqrt{\text{L}}}{q_m}$ $\frac{\sqrt{\text{L}}}{q_m}$

(Equation.S5)

* MERGEFORMAT (Equation.S6) 0 1 WEDCEFORMAT (Equation S) $R_L = \frac{1}{1 + k_L C_0}$ ^{*} MERGEFORMAT (Equation.S6) $=\frac{1}{1-\epsilon}$ * MERGEFORMAT (Equation.) $+k_{L}C_{0}$

Freundlich isotherm: $\ln q_e = \ln k_F + \frac{1}{n} \text{RFGEFORMAT}$

(Equation.S7)

Tempkin isotherm:
$$
q_e = \beta \ln k_T + \beta \text{MER} \text{GEFORMAT}
$$

(Equation.S8)

$$
\beta = \frac{RT}{b}
$$
 * MERGEFORMAT (Equation.S9)

Where, q_m (mg/g) is the theoretical maximum adsorption capacity and k_L is the constant energy relevant to the heat of adsorption calculated by Langmuir isotherms. C_e (mg/L) is the absorbate concentration in the liquid phase at equilibrium. q_e (mg/g) is the adsorption capacity at equilibrium. R_L is an essential separation factor of Langmuir isotherm defined as **Equation S6** showed. The value of R_L illustrates the type of isotherm, $R_L > 1$ is unfavorable, $R_L = 1$ is linear, $1 > R_L > 0$ is favorable and $R_L = 0$ is irreversible.

 k_F (mg/g) (L/mg)^{1/n} represents the adsorption capacity while n represents the intensity of adsorption in Freundlich theory and the favorability of the adsorption.

When $n > 1$, the adsorption process is favorable and heterogeneous. β represents the heat of adsorption expressed in **Equation S9** and b is the energy constant in Tempkin isotherm. R is 8.314 J/(K⋅mol) and T is absolute temperature. k_T is a constant of Tempkin isotherm.

The thermodynamics equations are as follows:

Van't Hoff equation:
$$
\ln K_c = \frac{\Delta S^0}{R} \frac{\Delta H^0}{RT}
$$

(Equation.S10)

$$
K_c = \frac{q_e}{C_e}
$$
 * MERGEFORMAT (Equation.S11)

$$
\Delta G^0 = -RT \ln K_c
$$
 * MERGEFORMAT (Equation.S12)
Arrhenius equation: $k_2 = k_0 e^{-\frac{Ea}{N}} MERGEFORMAT$

(Equation.S13)

Where, ΔS^0 (J mol⁻¹ K⁻¹) is entropy change and ΔH^0 (J/mol) is enthalpy change. R is 8.314 J/(K⋅mol) and T is absolute temperature. K_c (L/g) is standard thermodynamic equilibrium constant expressed in **equation S11**, where C_e (mg/L) is the absorbate concentration in the liquid phase at equilibrium and q_e (mg/g) is the adsorption capacity at equilibrium. ΔG⁰ (J/mol) is Gibbs free energy change and can be calculated by **Equation S12**.