Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information

Synergy of Morphology and Phosphorization for Enhanced Peroxymonosulfate Activation

over Magnetic Fe₃O₄ Catalysts

Haidong Lu^a, Congming Tang^{a*}, Kai Ma^b and Xinli Li^{a1*}

(^aSchool of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China; ^bSynthetic Lubricants Research Institute of Sinopec Lubricant Co., Ltd., Chongqing 400039, PR China)

S1. Preparation of catalysts

S1.1. RC-Fe₂O₃, THB-Fe₂O₃ and QC-Fe₂O₃

RC-Fe₂O₃: Under alkaline conditions, RC-Fe₂O₃ was synthesized by hydrothermal method and then calcined in air. In a typical experiment, 10 mmol of Fe $(NO_3)_3 \cdot 9H_2O$ and 36 mmol of urea $(CO(NH_2)_2)$ were dissolved in 60 mL of deionized water and stirred at room temperature for 30 minutes. Next, the obtained solution transferred to a 100 mL stainless steel hydrothermal reactor with the lined polytetrafluoroethylene, placed it in an oven, and maintained it at 120 °C for 8 hours. Then a precipitate was formed, washed several times with deionized water and anhydrous ethanol, and dried at 50 °C for 3 hours. The obtained sample was calcined in air at 500 °C for 3 hours.

THB-Fe₂O₃: 0.337g of K₄[Fe(CN)₆]·3H₂O was dissolved in 40 mL of sodium carboxymethyl cellulose (CMC, 300-800 MPa s, 1.25 g L⁻¹) solution. Then, 0.5 g of polyvinylpyrrolidone (PVP-k30) and 0.30 mL of hydrazine hydrate solution (N₂H₄·H₂O, 80%) were added, and dispersed with ultrasonic treatment until PVP-k30 was completely dissolved. The mixture was trasferred to a 100 mL stainless steel hydrothermal reactor with the lined polytetrafluoroethylene, heated to 160 °C, and remained at this temperature for 6 hours. After the hydrothermal reaction, the suspension was centrifuged, and the solid was washed four times with deionized water and once with ethanol. The

^{*}Corresponding author. Tel.: +86 23 62563250, E-mail address: tcmtang2001@cqut.edu.cn (C. M. Tang) and lixinlitcm@163.com (X. L. Li).

sample was dried at 80 ° C for 5 hours and calcined in air at 300 ° C for 3 hours. The obtained sample was labeled as THB-Fe₂O₃.

QC-Fe₂O₃: The amounts of K₄[Fe(CN)₆]·3H₂O and hydrazine hydrate solution were changed to 0.253 g and 0.90 mL, respectively. The other procedures were the same as those of THB- Fe₂O₃, and the obtained sample was marked as QC- Fe₂O₃.

S1.2. RC-Fe₃O₄, QC-Fe₃O₄ and THB-Fe₃O₄

RC-Fe₃O₄, QC-Fe₃O₄ and THB-Fe₃O₄ were prepared with lactic acid selective reduction. RC-Fe₃O₄: 0.5 g of RC-Fe₂O₃ was placed in tubular quartz reactor with an inner diameter of 4 mm, and both ends were sealed with quartz wool to fix sample. The sample was pretreated with high purity N₂ (flow rate 2.5 mL/min) at 360°C for 1 h, and then lactic acid (10 wt%) was pumped into the quartz tubular reactor via a peristaltic pump with a flow rate of 2 mL/h, treated for 6 h, and the obtained sample was marked as RC-Fe₃O₄. QC-Fe₃O₄ and THB-Fe₃O₄ were prepared with the similar method, as long as the percussor of RC-Fe₂O₃ was changed to QC-Fe₂O₃ and THB-Fe₂O₃, respectively.

S1.3. P-RC-Fe₃O₄, P-QC-Fe₃O₄ and P-THB-Fe₃O₄

0.2 g of as-prepared RC-Fe₃O₄ was placed downstream and 2 g of sodium hypophosphite monohydrate placed upstream of a quartz boat in a tube furnace, heated to 400 °C at 5 °C/min, and remained at 400 °C for 2 hours under a nitrogen atmosphere. The resultant sample was marked as P-RC-Fe₃O₄. QC-Fe₃O₄ and THB-Fe₃O₄ were treated with the similar method, respectively, and the obtained samples were marked as P-QC-Fe₃O₄ and P-THB-Fe₃O₄.

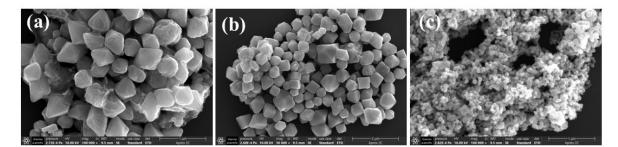


Fig. S1. Morphologies of nano-Fe₃O₄: (a) THB, (b) QC and (c) RC.

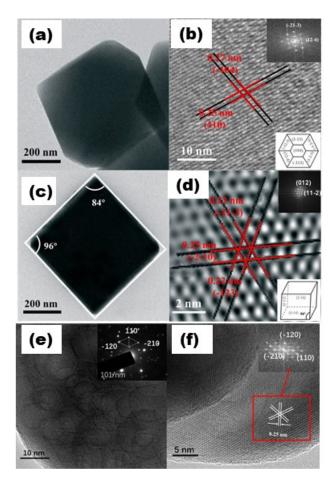


Fig. S2. Morphologies and structures of a-Fe₂O₃¹⁻². (a) TEM and (b) HRTEM images of a-Fe₂O₃-THB, insets: FFT pattern and drawing of a hexagon; (c) TEM and (d) HRTEM images of a-Fe₂O₃-QC, insets: FFT pattern and drawing of a cube; (e) TEM and (f) HRTEM images of the α -Fe₂O₃-RC, insets: SEAD pattern and FFT pattern.

Fig. S3. XPS survey spectra of P-THB-Fe $_3O_4$, P-QC-Fe $_3O_4$ and P-RC-Fe $_3O_4$.

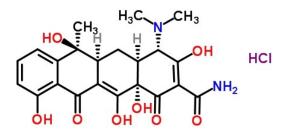
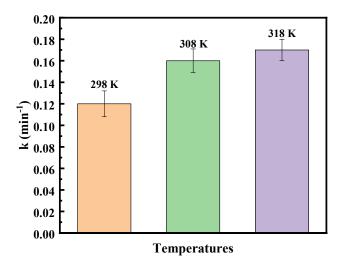



Fig. S4. Chemical structure of tetracycline (TC)

Fig. S5. Comparison of reaction rate constant of P-RC-Fe₃O₄/PMS system at different reaction temperatures

S4

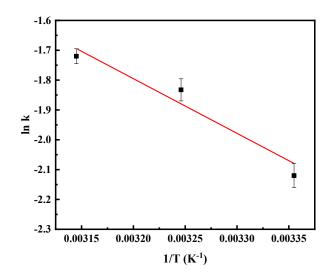


Fig. S6. Arrhenius plot of TC degradation over P-RC-Fe₃O₄/PMS system

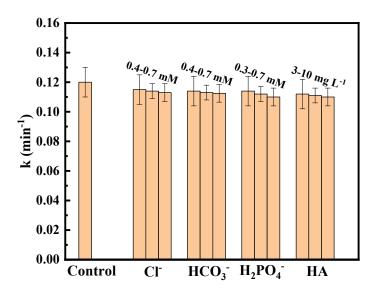


Fig. S7. Reaction rate constants under different experimental conditions.

Catalysts	Catalyst usage	C _{PMS} (g L ⁻¹)	C _{TC} (mg L ⁻¹)	Removal	References
CoFe@PPBC	0.1 gL ⁻¹	1	50	86.2%	Sep. Purif. Technol. 2022, 287, 120533
CoS _x	0.2 gL ⁻¹	0.3	30	99%	<i>Chem. Eng. J.</i> 2020, 381, 122768
FONC@PAC	0.5 gL ⁻¹	0.45	15	86.9%	<i>Chem. Eng.</i> J. 2022, 441, 136061
CoPx@NC	0.1 gL ⁻¹	0.3	30	90%	Sep. Purif. Technol. 2023, 322, 124257
Fe ₃ O ₄ -NCS _x	0.2 gL ⁻¹	0.37	20	97.1%	<i>Chemosphere</i> . 2021, 263, 128011
Co ₃ O ₄ /CPANI	0.15 gL ⁻¹	0.15	20	92.11%	J. Clean. Prod. 2023, 405, 137023
Co@N-MC	0.04 gL ⁻¹	0.2	25	91.27%	<i>J.Water.Proces</i> <i>s. Eng.</i> 2023 , 54, 104043
BS900	0.5 gL ⁻¹	0.3	40	87.6%	J. Environ. Chem. Eng. 2023 , 11(6), 111365
CuCo@GCNs	0.1 gL ⁻¹	0.307	20	95.3%	<i>Chem. Eng. J.</i> 2022, 450, 138302
CBB50	0.2 gL ⁻¹	0.123	10	90.3%	<i>Chem. Eng. J.</i> 2022, 431, 134054
CW/4Co/2BN QDs	0.2 gL ⁻¹	0.3	10	94.8%	J. Mater. Sci.Technol. 2024, 170, 11-24
CuS/g-C ₃ N ₄	0.2 gL ⁻¹	0.15	20	97.46%	<i>Chem. Eng. J.</i> 2024, 483,1490 82
BFMO	0.4 gL ⁻¹	0.092	50	95.7%	J. Environ. Chem. Eng. 2024, 114338

NiO/SnO ₂	0.4 gL ⁻¹	0.615	20	90.6%	Appl. Surf. Sci. 2022, 604, 154537
La ₂ CuO ₄	0.2 gL ⁻¹	0.615	20	96.05%	Chemosphere . 2023, 332, 138906
CuFe ₂ O ₄ /Bi ₂ O ₃	0.2 gL ⁻¹	0.4	30	95.7%	<i>Chem. Eng. J.</i> 2023, 473,1452 82
FeCo-MOF	0.1 gL ⁻¹	0.615	20	91%	Arab. J. Chem. 2024, 17(1),105483
FeS@NBC	0.07 gL ⁻¹	0.3	20	87.6%	J. Environ. Chem. Eng. 2024, 12(3), 113027
P-RC-Fe ₃ O ₄	0.1 gL ⁻¹	0.3	20	90%	This study

Table S2 The equations for generation of active species

Equations	Serial number
$\mathrm{Fe}^{\delta^+} + \mathrm{HSO}_5^- \longrightarrow \mathrm{Fe}^{2^+} + \mathrm{SO}_4^{} + \mathrm{OH}^-$	(1)
$SO_4^{-} + H_2O \rightarrow H^+ + SO_4^{2-} + \cdot OH$	(2)
$\mathrm{SO}_4^{\cdot-} + \mathrm{OH}^- \rightarrow \mathrm{H}^+ + \mathrm{SO}_4^{2-} + \cdot \mathrm{OH}$	(3)
$P^{\delta-}$ + HSO ₅ ⁻ → PO_4^{3-} + SO4 ⁻ + OH ⁻	(4)
SO_4 - + $H_2O \rightarrow H^+ + SO_4^{2-} + \cdot OH$	(5)
$\mathrm{HSO}_5^{-} \longrightarrow \mathrm{SO}_5^{-} + \mathrm{H}^+ + \mathrm{e}^-$	(6)
$SO_5^{\cdot-} + SO_5^{\cdot-} \rightarrow S_2O_8^{2-} + {}^1O_2$	(7)
$\mathrm{SO}_5^{-} + \mathrm{SO}_5^{-} \rightarrow 2\mathrm{SO}_4^{2-} + {}^1\mathrm{O}_2$	(8)
$HSO_5^+ H_2O \rightarrow H_2O_2^+ HSO_4^-$	(9)
$H_2O_2 + \cdot OH \longrightarrow HO_2 \cdot + H_2O$	(10)
$\mathrm{HO}_{2}^{-} \rightarrow \mathrm{O}_{2}^{-+} \mathrm{H}^{+}$	(11)
$HO_2^- \rightarrow O_2^{-} + H^+O_2^{-} + O_2^{-} + 2H_2O \rightarrow {}^1O_2 + H_2O_2 + 2OH^-$	(12)
$O_2^{-} + OH \rightarrow ^1O_2 + OH^-$	(13)

References

1. Gu, L. L.; Su, Q.; Jiang, W.; Yao, Y.; Pang, Y. J.; Ji, W. J.; Au, C. T., How do the unique Au/α-Fe₂O₃ interfacial structures determine activity in CO oxidation? *Catal. Sci. Technol.* **2018**, *8* (22), 5782-5793.

2. Yin, C.; Li, X.; Dai, Y.; Chen, Z.; Yang, D.; Liu, R.; Zou, W.; Tang, C.; Dong, L., The facet-regulated oxidative dehydrogenation of lactic acid to pyruvic acid on α-Fe₂O₃. *Green Chem.* **2021**, *23* (1), 328-332.