Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary Information for

"Synergistic strategies for defluoridation from RECl₃-AlCl₃-F complex solution: pH regulation and hydrolysis coprecipitation of aluminum by Ca₂Al(OH)₆Cl·2H₂O"

Jikai Zhang ^{a,b,d}, Ping Li ^{b,c,*}, Xindi Guan ^{a,b}, Hailin Zhang ^c, Yunwu Han ^b, Qingqing Chang ^b, Jiachun Xiong ^b, Qian Li ^b, Jie Tang ^b, Youming Yang ^a, Shili Zheng ^c

^a School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China

^b Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People's Republic of China

^c Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

^d Ganzhou Nonferrous Metallurgy Research Institute Co., Ltd, Ganzhou 341000, People's Republic of China

Supporting Information: 19 Pages, 9 Figures, and 6 Tables.

^{*} Corresponding author.

E-mail address: lipinggnipil@ipe.ac.cn (P. Li).

Part 1.1 Determination of fluorine concentration in solution ^{1,2}

Determination of the actual response slope S value of the electrode: After the reference electrode, fluoride electrode and ion meter were securely connected, the potential values of standard solutions were measured with varying fluorine concentrations at room temperature (see Table P1). The calibration curve for the actual response slope S value of the electrode was shown in Fig. P1, showing that -lgc(F) was directly proportional to the potential (*E*), and it can be seen from Nernst equation that S=58.232.

Measurement procedure: Prepare a known volume of test solution, add 20 ml of total ionic strength adjustment buffer (TISAB) and dilute with deionized water to 50 ml to form the test solution. Measure the initial potential and the potential after the addition of the standard solution. Substitute $\Delta E = E_x - E_1$ into the following formula of the standard addition method to determine the concentration of F in the test solution.

Measurement procedure: Prepare a known volume of the test solution, add 20 ml of total ion strength adjustment buffer (TISAB), and dilute with deionized water to 50 ml to form the test solution. Measure the initial potential and the potential after the addition of standard solution. Substitute $\Delta E = E_x - E_1$ into the following standard addition method formula to determine the concentration of F in the test solution.

$$c(F)_x = \frac{n V_s c(F)_s}{V_x (10^{\Delta E/S} - 1)}$$
(1)

Where:

 $c(F)_x$ represents the concentration of the test solution, mg/L; V_s is the volume of the fluoride standard solution added, mL; $c(F)_s$ is the concentration of the fluorine standard solution, mg/L; V_x is the volume of the test solution, mL; ΔE is the potential difference, mV; S is the electrode response slope; *n* indicates the dilution ratio.

Table P1. Electrode potential measured at different mass concentrations of F.

Fig. P1. Calibration curve of the actual response slope (S value) of the electrode.

Fig. S1. Schematic flowchart of the synthesis route for HCC (Ca₂Al(OH)₆Cl·2H₂O).

Fig. S2. FTIR spectrum of defluoridant before and after defluoridation.

Fig. S3. Influence of REEs and F concentrations on defluoridation process.

Fig. S4. Influence of factors on impurity Al, (A) Dose; (B) Dose for final pH; (C) Initial pH; (D) Temperature; and (E) Time.

Fig. S5. Effect of temperature on defluoridation residue, (A) XRD spectrum. SEM, (B) 293K; (C) 333K; (D) 363K.

Fig. S6. XRD spectrum of defluorination residue.

Fig. S7. Kinetic analysis of reaction orders, (A) m; (B) n; (C) lnke-1/T linear regression diagram.

A Barra - A	40-			Element	Wt%	Element	Wt%	Element	Wt%
	/e/			0	34.16	Ca	0.41	Sm	5.22
	sda	0		F	2.7	La	2.27	Gd	2.06
T THE REAL TO		Pr Dy		Al	4.75	Pr	5.42	Yb	2.59
	- 20 -	Sm Yb		Cl	6.6	Nd	14.85	Y	17.31
					∎ L∎ - ↓E	nergy/ke	r Nd Sr	n Gd D III	y Nd
<u>10µm</u>		10µm	F		10µп	n			10µm
A CONTRACTOR	741		and and a second	1.15	3				-
Са <u>10µm</u>	La	<u>10µт</u>	Y		10µn	n Si	m		Օրա
Рг. <u>10µт</u>	УЪ	<u>10µт</u>	Nd		10µn	n C	đ		10µm

Fig. S8. SEM-EDS analysis of the defluoridation residue.

Fig. S9. XPS analysis of survey spectrum of the defluoridant before and after defluorination.

Dy₂O₃ F Components Al_2O_3 CaO CeO_2 Er_2O_3 Fe₂O₃ Gd_2O_3 Ho_2O_3 K_2O La₂O₃ 4.37 Conc. % 1.03 1.31 1.75 4.76 2.64 0.42 0.08 0.76 0.12 18.76 Pr_6O_1 Components Nd_2O_3 NiO SiO_2 Sm_2O_3 SO_3 Tb_4O_7 Tm_2O_3 Yb_2O_3 Y_2O_3 TREO 1 15.67 3.57 Conc. % 0.22 4.1 0.07 2.91 0.83 0.31 2.14 34.09 93.75

XRF results of REO concentrate (TREO, total rare earths)

Components	CaO	A_2O_3	Cl	SiO ₂	Fe ₂ O ₃	MgO	SO_3
%	61.60	22.62	11.36	2.61	0.87	0.48	0.28

Major chemical compositions of the defluoridant by XRF.

Defluoridant	BET surface area $(m^2 \cdot g^{-1})$	Pore volume (cm ³ ·g ⁻¹)	Pore size (nm)
Ca ₂ Al(OH) ₆ Cl·2H ₂ O	11.81	0.07	25.46

The characterization of the prepared defluoridant.

EDS results of initial Al/F ratio on the Al/F ratio in defluoridation residue

Initial Al/F	molar ratio		0.5		1.2				
EDS o	f points	point 1	point 2	point 3	point 4	point 5	point 6	point 7	
Al/F mol	ar ratio of	0.50	0.62	1.00	1 /1	1 20	1 56	1 3 4	
defluorida	tion residue	0.50	0.02	1.09	1.41	1.39	1.50	1.34	
	0	37.75	77.68	48.00	34.48	38.57	41.50	47.74	
EDS	F	10.74	2.16	6.24	3.72	3.93	3.91	4.54	
(wt%)	Al	7.69	1.89	9.68	7.48	7.78	8.68	8.66	
	others	43.82	18.26	36.08	54.32	49.72	45.91	39.06	
Initial Al/F	molar ratio	io 2		,	3				
EDS o	f points	point 8	point 9	point 10	point 11	point 12	point 13	point 14	point 15
Al/F mol	ar ratio of	1.02	1 70	2.01	2.14	2 (2	2.22	4.20	0.07
defluorida	tion residue	1.82	1./0	2.01	2.14	2.62	3.33	4.20	8.07
	0	40.78	45.54	50.58	43.44	44.18	41.86	26.97	25.64
EDS	F	3.54	4.43	3.35	3.87	2.29	1.85	0.62	1.41
(wt%)	Al	9.16	10.73	9.55	11.77	8.53	8.72	3.75	16.16
	others	46.52	39.31	36.53	40.91	45.0	47.57	68.66	56.79

	Before	leaching	After	leaching	
Atomic species	B.E.	Percent	B.E.	Percent	Assignments
	(eV)	(%)	(eV)	(%)	
	73.80	49.4	74.5	43.9	Al-O
Al2p	74.32	50.6	75.0	38.2	Al-OH
	-	-	75.7	17.9	Al-F
Total		100		100	
F1s	-	-	684.9	100	Al-F-OH
Total		-		100	
	530.6	19.0	531.0	24.3	Me-O
O1s	531.36	74.5	532.1	68.0	ОН
	532.9	6.5	533.4	7.8	H_2O
Total		100		100	

Assignments of main spectral bands based on the binding energy and the percentage of atomic.

Comparative analysis of defluoridation performance of Ca₂Al(OH)₆Cl·2H₂O with other materials.

Deflucrident	Hyperhaline	Capacity	Conditions	Deferences	
Demuoridani	solution	(mg/g)	Conditions	Kelefences	
	DECI	06.40/*	C ₀ =425 mg/L, Time=2 h,	This most	
$Ca_2AI(OH)_6CI^2H_2O$	KEU13	90.470	Dosage=5 g/L, pH=2, T=333 K	THIS WOLK	
Louthouse			C ₀ =570 mg/L, Time=2 h,		
	RECl ₃	21.2	Dosage=8 wt% (~27 g/L),	3	
carbonate			pH=1, T=363 K		
CO	DECI	98.9%*	CO ₂ injection flow, 1000 L/h;	2	
CO_2	KEC13		343 K; initial pH=1; Time=1.5 h	3	
Aluminum-based	7.00 5.0		C ₀ =124 mg/L, Dosage=15 g/L,	Λ	
composite	211504	5.0	pH=5.1, 323 K, Time=2.5 h	4	
Amorphous porous	7.50	12.1	C ₀ =120 mg/L, Dosage=10 g/L,	5	
layered-Al ₂ O ₃	211504	12.1	pH=5.0, T=313 K, Time=2 h	5	
Madified movenite			C ₀ =300 mg/L, Caustic ratio: 1.6,		
	NaAlO ₂	36.86	Time=120 min, Dosage=20 g/L,	2	
$Ca_{12}AI_{14}O_{33}$			T=353 K		

* Defluoridation yield. (Since it is not an adsorption process, the adsorption isotherms cannot be obtained, so the fluoride removal yield is provided here.)

References

- 1 C. J. Rix, A. M. Bond and J. D. Smith, Anal. Chem., 1976, 48, 1236–1239.
- Y. Han, Q. Qin, Q. Chang, H. Zhang, J. Zhang, X. Guan, J. Xiong, Q. Li, J. Tang,
 G. Li and P. Li, *Sep. Purif. Technol.*, 2025, 353, 128412.
- 3 D. Zhang, K. Gao, X. Zhang and M. Wang, *Minerals*, 2021, **12**, 31.
- 4 Z. Tian, W. Guo, Z. Zhang, Y. Lai, S. Ye and J. Li, *Hydrometallurgy*, 2017, **171**, 222–227.
- 5 K. Yang, Y. Li, Z. Zhao, Z. Tian and Y. Lai, *Chem. Eng. Res. Des.*, 2020, 153, 562–571.