Supporting information

Derivative of clove oil used as chemosensor for colorimetric and fluorometric

detection of Al³⁺: crystal structure description and live cell imaging

Mohafuza Khatun,^a Jayanta Mandal,^a Rajdeep Ganguly,^b Ananya Barui,^b Snehasis

Banerjee,^c and Amrita Saha*a

^aDepartment of Chemistry, Jadavpur University, Kolkata- 700032, India.

E-mail: amritasahachemju@gmail.com; Tel. +91-33-24572146

^bCentre for Healthcare Science and Technology, Indian Institute of Engineering Science and

Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, WB, India.

^cDepartment of Chemistry, Hoogly Mohsin College, P.O. Chinsurah, Hoogly 712101, WB, India.

Serial	Content	Page
No.		No.
1	Table S1 Crystal parameters and selected refinement details for chemosensor H_3L .	S3
2	Table S2 Selected bond lengths (Å) and bond angles (°) for chemosensor H_3L .	S4
3	Table S3 Apparent binding constant (K), LOD, lifetime (τ_f) and quantum yield (Φ)	S4
	values of H_3L and complex 1 from spectrofluorometric measurement.	
4	Table S4 First few strong and the lowest-lying absorption and emission band calculated wavelength $(nm)/(nm)/(nm)$ (N) as a similar strength (f) major	S5
	contribution, and the experimental wavelength (nm) for the investigated complex 1	
	in methanol media.	
5	Fig. S1 ESI-MS ⁺ spectrum of $[H_3L+H]^+$.	S6
6	Fig. S2 FTIR spectra of chemosensor H_3L .	S6
7	Fig. S3 ESI-MS ⁺ spectrum of complex 1, $\{[Al(HL)NO_3+H]^+\}$.	S7
8	Fig. S4 FTIR spectra of complex 1.	S7
9	Fig. S5 ¹ H NMR spectra of H_3L in DMSO- d_6 solvent.	S8
10	Fig. S6 ¹ H NMR spectra of complex 1 in DMSO- d_6 solvent.	S9
11	Fig. S7 ¹³ C NMR spectra of chemosensor H_3L in DMSO- d_6 solvent.	S10
12	Fig. S8 ¹³ C NMR spectra of complex 1 in DMSO- d_6 solvent.	S11
13	Fig. S9 ¹ H NMR titration of the free ligand (H_3L) and with the addition of 0.25,	S12

	0.50 and 1 equivalent of Al^{3+} in DMSO- d_6 solvent.	
14	Fig. S10 Binding constant calculation for H_3L with Al^{3+} in HEPES buffer at pH 7.4	S13
	$(MeOH:H_2O, 9:1, (v/v)).$	
15	Fig. S11 Time-resolved fluorescence decay curves (logarithm of normalized	S13
	intensity vs time in nS) of H_3L in the absence () and presence) of Al^{3+} ion, ()	
	indicates decay curve for the scattered.	
16	Fig. S12 Relative fluorescence intensity diagram of $[H_3L-Al^{3+}]$ with different	S14
	cations upon λ_{ex} = 500 nm in HEPES buffer at pH 7.4 (MeOH:H ₂ O, 9:1, (v/v)).	
17	Fig. S13 Relative fluorescence intensity diagram of H_3L with of different anions	S15
	upon λ_{ex} = 500 nm in HEPES buffer at pH 7.4 (MeOH:H ₂ O, 9:1, (v/v)).	
18	Fig. S14 Relative fluorescence intensity diagram of $[H_3L-Al^{3+}]$ with different	S16
	anions upon λ_{ex} = 500 nm in HEPES buffer at pH 7.4 (MeOH:H ₂ O, 9:1, (v/v)).	
19	Fig. S15 Colour changes of chemosensor (H_3L) (20µM) under UV and Visible light	S17
	in HEPES buffer at pH 7.4 (MeOH:H ₂ O, 9:1, (v/v)).	
20	Fig. S16 Selected angle between two planes of chemosensor H_3L .	S17
21	Fig. S17 Experimental and theoretical absorption spectra of complex 1.	S18
22	Scheme S1 Synthesis route of complex 1.	S19
23	Chart S1 Literature survey of rhodamine based metal ion sensors.	S20-S23

Chemosensor H ₃ L	
Empirical formula	C ₃₇ H ₃₆ N ₄ O ₄
Formula weight	600.70
Temperature (K)	273(2)
Crystal system	Triclinic
Space group	P-1
<i>a</i> (Å)	9.3947(3)
<i>b</i> (Å)	12.3486(3)
<i>c</i> (Å)	14.4715(4)
$\alpha(^{\circ})$	94.1270(10)
β(°)	103.7440(10)
γ(°)	94.6350(10)
Volume (Å ³)	1618.23(8)
Z	2
D_{calc} (g cm ⁻³)	1.233
Absorption coefficient (mm ⁻¹)	0.081
F(000)	636
θ Range for data collection (°)	1.662-27.127
Reflections collected	52150
Independent reflection / R _{int}	5687/ 0.0419
Data / restraints / parameters	7140/0/406
Goodness-of-fit on F ²	1.042

Final *R* indices $[I \ge 2\sigma(I)]$

Largest diff. peak / hole (e Å⁻³)

R indices (all data)

R1 = 0.0726, wR2 =

0.2040

R1 = 0.0876wR2 = 0.2181

0.531/-0.420

Table S1 Crystal parameters and selected refinement details for chemosensor H_3L .

Chemosensor H ₃ L								
N3-C10	1.494(3)	C8-C10-C11	110.55(17)					
N3-N4	1.376(2)	C11-C10-C20	112.47(17)					
N3-C26	1.372(3)	N3-C10-C8	110.83(17)					
C8-C10	1.515(3)	N3-C10-C11	109.50(16)					
C11-C10	1.516(3)	N3-C10-C20	99.40(16)					
C20-C10	1.518(3)	C26-N3-C10	115.33(17)					
C26-O2	1.214(3)	C26-N3-N4	129.50(18)					
		C27-N4-N3	121.37(19)					
		O2-C26-N3	126.4(2)					

Table S2 Selected bond lengths (Å) and bond angles (°) for chemosensor H_3L .

Table S3 Apparent binding constant (K), LOD, lifetime (τ_f) and quantum yield (Φ) values of H₃L and complex 1 from spectrofluorimetric measurement.

	K (M ⁻¹)	LOD (M)	τ_{f} (nS) (average)	χ^2	Φ
H ₃ L	-		0.26	0.990360	0.014
Complex 1	2.01×10 ⁵	2.82× 10-6	1.29	0.9031072	0.065

Table S4 First few strong and the lowest-lying absorption and emission band calculated wavelength (nm)/energies (eV), oscillator strength (f), major contribution, and the experimental wavelength (nm) for the investigated complex **1** in methanol media.

	Excited states	Energy (eV)	Wavelength (nm)	Osc. Strengt h (f)	Major contributors	Experimental Wavelength (nm)
Absorption						
	S_1	2.1516	576	0.3120	$HOMO \rightarrow LUMO (97.9\%)$	530
	S ₃	2.9479	420	0.6588	$HOMO \rightarrow LUMO +2 (94\%)$	
	S ₉	3.5893	345	0.2046	HOMO-4 \rightarrow LUMO (72.8%)	350
Emission						
Opened spirolactam ring	S ₁	2.4839	530	0.6441	HOMO \rightarrow LUMO+2 (86.8%)	552
Closed spirolactam ring	S_1	2.5548	485	0.0004	HOMO-3 → LUMO (98.9%)	552

Fig. S1 ESI-MS⁺ spectrum of $[H_3L+H]^+$.

Fig. S2 FT-IR spectra of chemosensor H_3L .

Fig. S3 ESI-MS⁺ spectrum of complex 1, $\{[Al(HL)NO_3+H]^+\}$.

Fig. S4 FT-IR spectra of complex 1.

Fig. S5 ¹H NMR spectra of H_3L in DMSO- d_6 solvent.

Fig. S6 ¹H NMR spectra of complex 1 in DMSO- d_6 solvent.

Fig. S7 ¹³C NMR spectra of chemosensor H_3L in DMSO- d_6 solvent.

Fig. S8 ¹³C NMR spectra of complex 1 in DMSO- d_6 solvent.

Fig. S9 ¹H NMR titration of the free ligand (H₃L) and with the addition of 0.25, 0.50 and 1 equivalent of Al³⁺ in DMSO- d_6 solvent.

Fig. S10 Binding constant calculation for H_3L with Al^{3+} in HEPES buffer at pH 7.4 (MeOH:H₂O, 9:1, (v/v)). [http://supramolecular.org]. Binding constant = $2.01 \times 10^5 \text{ M}^{-1}$.

Fig. S11 Time-resolved fluorescence decay curves (logarithm of normalized intensity vs time in nS) of H_3L in the absence () and presence () of Al^{3+} ion, () indicates decay curve for the scattered.

Fig. S12 Relative fluorescence intensity diagram of $[H_3L-Al^{3+}]$ with different cations upon $\lambda_{ex} = 500$ nm in HEPES buffer at pH 7.4 (MeOH:H₂O, 9:1, (v/v)) where H_3L (20 μ M) + Al³⁺ (20 μ M) + Mⁿ⁺ (100 μ M) and Mⁿ⁺= (1-Zn²⁺, 2-Cr³⁺, 3-Fe³⁺, 4-Cd²⁺, 5-Hg²⁺, 6-Pb²⁺, 7-Ag⁺, 8-Mn²⁺, 9-Ni²⁺, 10-Cu²⁺, 11-Na⁺, 12-K⁺, 13-Ca²⁺, 14-Mg²⁺ and 15-Co²⁺, respectively).

Fig. S13 Relative fluorescence intensity diagram of H_3L with of different anions upon $\lambda_{ex} = 500$ nm in HEPES buffer at pH 7.4 (MeOH:H₂O, 9:1, (v/v)). 1=only H_3L (20 µM); 2-24= H_3L (20 µM) + Mⁿ⁻(100 µM), where Mⁿ⁻= 2-AcO⁻, 3-OCN⁻, 4-F⁻, 5-Br⁻, 6-Г⁻, 7-Cl⁻, 8-N₃⁻, 9-S₂O₃2⁻, 10-SO₃2⁻, 11-PF₆⁻, 12-P₂O₇2⁻, 13-NO₃⁻, 14-BF₄⁻, 15-ClO₄⁻, 16-H₂PO₄⁻, 17-HPO₄2⁻, 18-AsO₂⁻, 19-S²⁻, 20-SCN⁻, 21-PO₄3⁻, 22-L-Histidine, 23-L-Cystiene and 24-ATP, respectively.

Fig. S14 Relative fluorescence intensity diagram of $[H_3L-Al^{3+}]$ with different anions upon $\lambda_{ex} = 500 \text{ nm}$ in HEPES buffer at pH 7.4 (MeOH:H₂O, 9:1, (v/v)) where H_3L (20 µM) + Al³⁺ (20 µM) + Mⁿ⁻(100 µM) and Mⁿ⁻= 1-AcO⁻, 2-OCN⁻, 3-F⁻, 4-Br⁻, 5-I⁻, 6-Cl⁻, 7-N₃⁻, 8-S₂O₃^{2⁻}, 9-SO₃^{2⁻}, 10-PF₆⁻, 11-P₂O₇^{2⁻}, 12-NO₃⁻, 13-BF₄⁻, 14-ClO₄⁻, 15-H₂PO₄⁻, 16-HPO₄^{2⁻}, 17-AsO₂⁻, 18-S^{2⁻}, 19-SCN⁻, 20-PO₄³⁻, 21-L-Histidine, 22-L-Cystiene and 23-ATP, respectively.

Fig. S15 Colour changes of chemosensor (H_3L) (20µM) under UV and Visible light in HEPES buffer at pH 7.4 (MeOH:H₂O, 9:1, (v/v)).

Fig. S16 Selected angle between two planes of chemosensor H_3L .

Fig. S17 Experimental and theoretical absorption spectra of complex 1.

Scheme S1 Synthesis route of complex 1.

Sl. No.	Probe	Sensing metal	Solvent used	Excitation/ Emission (nm)	Limit of detection (LOD) (M)	Binding constant (M ⁻¹)	Fluoresc ent intensity enhance ment	Crystal structur e	Biological study	Refs.
1.		Fe ³⁺ Al ³⁺ Cr ³⁺	H ₂ O/CH ₃ CN (7 : 3, v/v, pH 7.2)	502/558	$\begin{array}{c} 2.57 \times 10^{-6} \\ 0.78 \times 10^{-6} \\ 0.47 \times 10^{-6} \end{array}$	$\begin{array}{c} K_{d} = \\ 1.94 \times 10^{-5} \\ 3.15 \times 10^{-5} \\ 2.26 \times 10^{-5} \end{array}$	669 653 667	No	None	31 a
2.	$ \begin{array}{c} H^{N} \longrightarrow 0 \longrightarrow V^{N} H \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	Al ³⁺ Cr ³⁺ Fe ³⁺	Britton– Robinson buffer solution $(H_2O/MeOH$ 1:9 v/v; pH 7.4)	525/555	For R=H 2.86×10 ⁻⁸ 2.67×10 ⁻⁸ 5.62×10 ⁻⁶ For R=CH ₃ 2.78×10 ⁻⁸ 2.61×10 ⁻⁸ 6.14×10 ⁻⁶	For R=H (M^{-2}) 5.14 ×10 ⁵ 4.91×10 ⁵ 3.37 × 10 ⁴ For R=CH ₃ 5.03 × 10 ⁵ 4.86 × 10 ⁵ 3.95 × 10 ⁴	400 400 100	Yes	Cell imaging	31b
3.		Al ³⁺ Ga ³⁺ In ³⁺ Tl ³⁺	10 mM HEPES buffer in (1:9, v/v) H ₂ O:EtOH (pH = 7.4)	530/555 530/553 530/553 530/558	2.66 ×10 ⁻⁸ 10.40 ×10 ⁻⁸ 8.19×10 ⁻⁸ 3.10 ×10 ⁻⁸	$5.01 \times 10^{4} \\ 4.79 \times 10^{4} \\ 4.57 \times 10^{4} \\ 5.75 \times 10^{4}$	96 26 32 80	No	None	31c

Chart S1 Literature survey of rhodamine based metal ion sensors.

4.	$ \begin{array}{c} 0 \\ 0 \\ N \\ N \\ 0 \\ N \\ N$	Al ³⁺ Fe ³⁺ Cr ³⁺	HEPES buffer at pH 7.4 in H ₂ O/ MeOH (9:1, v/v)	510/575	$\begin{array}{c} 1.74 \times 10^{-5} \\ 1.86 \times 10^{-5} \\ 3.45 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.44 \times 10^{6} \\ 1.52 \times 10^{6} \\ 4.01 \times 10^{7} \end{array}$	~10 ~8 ~4	Yes	Cell imaging	31d
5.	$ \begin{array}{c} $	Cr ³⁺	10 mM, CH ₃ CN–PBS (9 : 1 v/v, pH = 7.4)	531/558	0.21 × 10 ⁻⁶	1.56 × 10 ⁴	~7	Yes	None	31e
6.		Al ³⁺ Cr ³⁺ HSO ₄ -	H ₂ O-CH ₃ CN (1:9, v/v)	500/585 500/583 500/587	2.20×10^{-8} 2.12×10^{-8} 8.63×10^{-7}	1.79×10^{5} 1.79×10^{4}	341 292 136	No	Cell imaging	31f
7.		Cu ²⁺	1 mM PBS buffer in an CH ₃ CN /PBS (v/v, 1 :1%) at pH = 7.4	510/550	3.58 × 10 ⁻⁸	0.2 × 10 ⁻⁵	28	No	Cell imaging	31g

8.	$H_{N} = O = O = N_{H}$ $H_{N} = O = O = O$	Al ³⁺	10 mM HEPES buffer in H ₂ O/EtOH = 1:9 (v/v) (pH 7.4)	530/553	1.11 × 10 ⁻⁹ 1.05 × 10 ⁻⁹	3.98×10^4 1.09×10^4	145 52	No	Cell imaging	31h
9.	$ \xrightarrow{N}_{N} \xrightarrow{0}_{N} \xrightarrow{N}_{N} \xrightarrow{N} \xrightarrow{N}_{N} \xrightarrow{N} \xrightarrow{N}_{N} \xrightarrow{N}_{N} \xrightarrow{N}_{N} \xrightarrow{N} \xrightarrow{N}_{N} N$	Fe^{3+} Al^{3+} Cr^{3+} and Hg^{2+}	EtOH/H ₂ O (4/1, v/v HEPES, pH = 7.4)	559/582 559/582 559/582 and 555/578	10.20×10 ⁻⁹ 14.66×10 ⁻⁹ 58.78×10 ⁻⁹ and 73.33×10 ⁻⁹	$5.78 \times 10^{5} \\ 7.07 \times 10^{5} \\ 4.10 \times 10^{5} \\ 3.97 \times 10^{5} \\ \end{cases}$	~15	No	Cell imaging	31i
10.		Al ³⁺ Fe ³⁺	EtOH	530/560	0.76 × 10 ⁻⁹ 0.49 × 10 ⁻⁹		>900	Yes	Cell imaging	31j
11.	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & H \end{array} \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	Fe ³⁺	H ₂ O (pH 7.2, 10 mM HEPES buffer)	510/551	4.184 ×10 ⁻⁶	$(1.16 \pm 0.04) \times 10^4$	14	No	Cell imaging	31k

12.		Al ³⁺	HEPES buffer (9:1, MeOH: H ₂ O, v/v, pH 7.4)	500/552	2.82 × 10 ⁻⁶	2.01 × 10 ⁵	138	Yes	Cell imaging	This wok
	2									