Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

for

LUMINESCENT INDIUM COMPLEXES WITH ONN-DONOR SCHIFF BASES: SYNTHESIS,

STRUCTURE, AND DFT INVESTIGATION

Irina V. Ershova^{a,*}, Svetlana V. Baryshnikova^a, Maxim V. Arsenyev^a, Alexey A. Belikov^a, Ilya A.

Yakushev^b, Pavel V. Dorovatovskii^c, Vasily A. Ilichev^a, Sergey Yu. Ketkov^a, Alexandr V. Piskunov^{a,*}

^aG. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 49

Tropinina str., 603950 Nizhny Novgorod, Russia

^bN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences,

Leninskii prosp. 31, 119991 Moscow, Russia

^cNational Research Center 'Kurchatov Institute', Kurchatov sq. 1, 123182 Moscow, Russia

Table of contents

Table S1. Crystallographic data and structure refinement details for 1-4	2
Table S2. Selected Bond Lengths (Å) and Angles (°) in 1-4	3
Figures S1-S6. ¹ H, ¹³ C NMR spectra of 1-4	4-8
Figures S7-S10. 2-D NMR spectra (HSQC, HMBC) of 1-4	9-12
Figures S11-S14. DOSY spectra of 1-4	13-14
Table S3. Results of measurements of diffusion coefficient (D)	15
Figure S15. Dependence of $\log D vs \log M_w$	16
Figure S16. UV-vis absorption spectra of 1-4 in organic solvents	17
Table S4. Electronic absorption spectral data of 1-4	17
Figure S17. UV-vis absorption spectra of 1-4 recorded in Nujol	18
Figure S18. PL spectra of 1-4 recorded in solid state and in DCM solution	18
Figures S19-S22. UV-PL spectra of 1-4 in DCM	19
Figure S23. Molecular graphs of the DFT-optimized 1 dimer (a) and monomers 1 (b) and 4 (c).	20
Figure S24. Calculated absorption spectrum of the 1 dimer	21
Figures S25-S28. IR spectra of 1-4	22-23
Atomic coordinates in the optimized structures of dimer 1 and 1, 4 monomers	24-31

^{*}Corresponding author: E-mail address: irina@iomc.ras.ru (I.V. Ershova), pial@iomc.ras.ru (A.V. Piskunov)

Compound	1	2	3	4
Empirical formula	C ₂₈ H ₃₀ In ₂ N ₄ O ₂	C ₃₀ H ₃₄ In ₂ N ₄ O ₂	C ₂₈ H ₂₈ Cl ₂ In ₂ N ₄ O ₂	C ₂₈ H ₂₈ In ₂ N ₆ O ₆
Formula weight	684.20	712.25	753.08	774.20
Temperature [K]	100(2)	100(2)	100(2)	100(2)
Wavelength [Å]	0.75268	0.71073	0.71073	0.75268
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	C2/c	$P2_1/n$	$P2_1/n$	<i>P</i> -1
Unit cell dimensions				
a [Å]	21.051(6)	8.6219(5)	8.5866(2)	7.9004(19)
<i>b</i> [Å]	10.1465(9)	17.4483(11)	17.1574(5)	8.4003(17)
<i>c</i> [Å]	13.0494(9)	9.7888(6)	9.9567(3)	11.382(3)
α [°]	90	90	90	77.261(5)
βſ°]	111.090(9)	102.362(2)	102.3870(10)	82.036(18)
γ[°]	90	90	90	89.638(19)
V [Å ³]	2600.6(8)	1438.46(15)	1432.71(7)	729.4(3)
Z	4	2	2	1
d_{calc} [g cm ⁻³]	1.748	1.644	1.746	1.762
μ [mm ⁻¹]	2.094	1.636	1.829	1.893
F_{000}	1360	712	744	384
Crystal dimensions [mm ³]	$0.09 \times 0.05 \times 0.03$	$0.15 \times 0.14 \times 0.12$	$0.24 \times 0.20 \times 0.04$	$0.06 \times 0.05 \times 0.02$
θ range for data collection [°]	2.393-26.644	2.335-30.532	2.374-30.503	1.962-26.960
Reflections collected	2277	21821	23889	5470
Independent reflections (R_{int})	2277 ($R_{int} = 0.0268$)	4391 ($R_{int} = 0.0563$)	4384 ($R_{int} = 0.0333$)	2549 ($R_{int} = 0.0447$)
Completeness to θ [%]	99.0	100.0	100.0	95.5
Data/restraints/parameters	2277 / 0 / 166	4391 / 0 / 175	4384 / 0 / 174	2549 / 0 / 192
Einel R indices $[1, 2, -(1)]$	$R_1 = 0.0503$	$R_I = 0.0332$	$R_I = 0.0200$	$R_1 = 0.0378$
Final <i>R</i> indices $[1 \ge 20(1)]$	$wR_2 = 0.1394$	$wR_2 = 0.0571$	$wR_2 = 0.0467$	$wR_2 = 0.0888$
Final <i>R</i> indices (all data)	$R_I = 0.0566$	$R_I = 0.0515$	$R_1 = 0.0256$	$R_I = 0.0458$
	$wR_2 = 0.1440$	$wR_2 = 0.0635$	$wR_2 = 0.0484$	$wR_2 = 0.0924$
$S(F^2)$	1.096	1.038	1.066	1.045
Largest diff. peak and hole [e Å ⁻³]	1.562 / -1.352	0.618 / -0.676	0.464 / -0.395	1.325 / -1.169

Table S1. Crystallographic data and structure refinement details for 1-4

	1	2	3	4
In(1)-O(1)	2.195(4)	2.1969(17)	2.2004(11)	2.232(4)
In(1)-N(1)	2.414(5)	2.400(2)	2.3988(13)	2.383(4)
In(1)-N(2)	2.736(5)	2.697(2)	2.6725(14)	2.591(4)
In(1)-O(1A)	2.500(4)	2.5112(17)	2.5404(11)	2.657(3)
C(1)-In(1)-C(2)	143.5(2)	144.89(11)	145.14(8)	148.2(2)
C(1)-In(1)-O(1)	103.45(19)	106.04(9)	104.80(6)	102.57(18)
C(2)-In(1)-O(1)	108.3(2)	103.30(10)	104.04(7)	98.64(19)
C(1)-In(1)-N(1)	103.16(19)	95.11(9)	95.08(6)	106.83(17)
C(2)-In(1)-N(1)	103.9(2)	112.36(9)	112.57(6)	102.38(17)
O(1)-In(1)-N(1)	70.98(15)	71.37(6)	71.12(4)	70.80(13)
C(1)-In(1)-O(1A)	87.56(19)	84.78(8)	84.81(6)	83.12(16)
C(2)-In(1)-O(1A)	87.8(2)	87.87(9)	87.68(6)	82.71(16)
O(1)-In(1)-O(1A)	68.22(15)	69.47(7)	68.89(5)	68.96(13)
N(1)-In(1)-O(1A)	139.19(15)	139.11(6)	138.51(4)	139.74(13)
C(1)-In(1)-N(2)	84.6(2)	84.69(9)	85.14(6)	91.11(17)
C(2)-In(1)-N(2)	85.4(2)	87.86(9)	87.85(6)	89.32(17)
O(1)-In(1)-N(2)	135.31(15)	135.33(6)	135.52(4)	136.91(13)
N(1)-In(1)-N(2)	64.41(16)	64.45(7)	64.80(4)	66.13(14)
O(1A)-In(1)-N(2)	156.39(13)	155.07(6)	155.43(4)	154.02(13)
In(1)-O(1)-In(1A)	111.78(15)	110.53(7)	111.11(5)	111.04(13)

Table S2. Selected Bond Lengths (Å) and Angles (°) in 1-4

Fig. S1. ¹H (top) and ¹³C (bottom) NMR spectra of 1 (*from residual CHCl₃ in CDCl₃).

ppm -10

0.23

Fig. S2. ¹H (top) and ¹³C (bottom) NMR spectra of 2 (*from residual CHCl₃ in CDCl₃).

Fig. S3. ¹H (top) and ¹³C (bottom) NMR spectra of 3 (*from residual CHCl₃ in CDCl₃).

Fig. S4. ¹H (top) and ¹³C (bottom) NMR spectra of 4 (*from residual CHCl₃ in CDCl₃).

Fig. S5. ¹H NMR spectrum of **2** (*from residual DMSO in DMSO-d₆).

Fig. S6. ¹H NMR spectrum of 3 (*from residual DMSO in DMSO-d₆).

Fig. S7. HSQC (top) and HMBC (bottom) 2D-NMR spectra of 1

Fig. S8. HSQC (top) and HMBC (bottom) 2D-NMR spectra of 2

Fig. S9. HSQC (top) and HMBC (bottom) 2D-NMR spectra of 3

Fig. S10. HSQC (top) and HMBC (bottom) 2D-NMR spectra of 4

Fig. S12. DOSY spectrum of 2.

Fig. S14. DOSY spectrum of 4.

Molecule	M _w	lgM _w	-lgD	ref.	Molecule	M _w	lgM _w	-lgD	ref.
OH N N	198.23	2.3	8.95	[1]	OH N N	212.25	2.33	8.99	[1]
CI N N	232.67	2.37	8.97	[2]		532.82	2.73	9.12	[3]
	534.49	2.73	9.14	[3]	tBu tBu tBu	729.37	2.86	9.23	[4]
tBu tBu N N tBu tBu tBu tBu	611.46	2.79	9.18	[5]	tBu tBu tBu tBu	735.6	2.87	9.18	[5]
tBu O Sn O tBu	919.75	2.96	9.32	[6]					

 Table S3. Results of measurements of diffusion coefficient (D).

This work

Molecule	Mw	lgM _w	-lgD	Molecule	Mw	lgMw	-lgD
	342.11	2.53	9.03		356.13	2.55	9.05
	376.55	2.58	9.05	O ₂ N N N	387.10	2.59	9.06
	684.22	2.84	9.03		712.26	2.85	9.05
	753.1	2.88	9.05		774.2	2.89	9.06

Fig. S15. Dependence of log *D vs* log M_w in CDCl₃ (where D – diffusion coefficient, M_w - molecular weight). All compounds were normalized to log $D_{ref,fix}$ (Naphthalene) = -8.79 [7]. Blue circles calculated for previously published compounds, green triangles – for monomeric species of **1-4**, red squares – for dimeric species of **1-4**. For data see Table S3.

- 1. Milani, N.C., et al., *A new class of copper(I) complexes with imine-containing chelators which show potent anticancer activity.* Appl. Organomet. Chem., 2020. **34**(4): p. e5526.
- Qiao, X., et al., Study on potential antitumor mechanism of a novel Schiff Base copper(II) complex: Synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. J. Inorg. Biochem., 2011. 105(5): p. 728-737.
- 3. Piskunov, A.V., et al., *Template Synthesis of Tin(IV) Complexes with Tridentate Iminopyridine Ligands*. Russ. J. Coord. Chem., 2019. **45**(3): p. 188-199.
- 4. Piskunov, A.V., et al., *Template Assembling of the Pentadentate Redox-Active Ligand in the Coordination Sphere of Tin(IV)*. Russ. J. Coord. Chem., 2018. **44**(2): p. 138-146.
- 5. Piskunov, A.V., et al., *Tin(iv) and lead(iv) complexes with a tetradentate redox-active ligand*. Dalton Trans., 2012. **41**(36): p. 10970-10979.
- 6. Cherkasov, V.K., et al., *A New Octacoordinated Tin Complex with Tetradentate RedoxActive Ligands*. Doklady Chemistry, 2013. **448**: p. 61-65.
- Neufeld, R. and D. Stalke, Accurate molecular weight determination of small molecules via DOSY-NMR by using external calibration curves with normalized diffusion coefficients. Chem. Sci., 2015. 6: p. 3354-3364.

Fig. S16. UV-vis absorption spectra of 1-4 in various organic solvents at 293 K ($C = 10^{-4}$ M).

Complex	Solvent		$\lambda_{\rm max}, {\rm nm} (\epsilon {\rm x} 10^{-4} {\rm M}^{-1} {\rm cm}^{-1})$				
1	CCl ₄	276 (1.27),	345 (0.42),	531 (0.47)			
	Et_2O	238 (1.17),	339 (0.83),	520 (1.06)			
1	DCM	239 (1.17),	336 (0.79),	500 (0.96)			
	DMF	274sh (0.94),	286sh (0.98),	330 (1.10),	494 (1.33)		
	CCl ₄	261 (0.80),	348 (0.97),	558 (1.06)			
n	Et_2O	233 (0.30),	259sh (0.20),	341 (0.26),	538 (0.32)		
2	DCM	235 (1.26),	337 (0.87),	520 (0.98)			
	DMF	272 (1.35),	331 (0.96),	515 (1.09)			
	CCl ₄	262 (0.91),	336 (1.10),	545 (1.25)			
3	Et_2O	232 (1.19),	251sh (1.07),	328 (0.84),	527 (0.97)		
5	DCM	237 (1.25),	251sh (1.22),	324 (0.96),	511 (1.05)		
	DMF	267 (0.92),	320 (1.29),	498 (1.41)			
	CCl ₄	341sh (1.00),	356 (1.02),	499 (0.83)			
1	Et_2O	224 (0.50),	276sh (0.36),	329 (0.63),	368 (0.67),	482 (0.61)	
-	DCM	230 (0.76),	325 (1.04),	377 (1.26),	474 (1.18)		
	DMF	277sh (1.05),	306 (1.19),	382 (1.57),	460 (1.56)		

Table S4. Electronic absorption spectral data of 1-4 in CCl₄, Et₂O, DCM, DMF at 293 K.

Fig. S17. UV-vis absorption spectra of 1-4 recorded in Nujol at 293 K.

Fig. S18. PL spectra of 1-4 recorded in solid state and in DCM solution (C = 10^{-5} M) at 293 K.

Fig. S19. UV-PL spectra of 1 in DCM at 293 K.

Fig. S20. UV-PL spectra of 2 in DCM at 293 K.

Fig. S21. UV-PL spectra of 3 in DCM at 293 K.

Fig. S22. UV-PL spectra of 4 in DCM at 293 K.

Fig. S23. Molecular graphs of the DFT-optimized **1** dimer (a) and monomers **1** (b) and **4** (c). The small orange circles correspond to the (3,-1) bonding critical points.

Fig. S24. Calculated absorption spectrum of the 1 dimer. The long-wavelength peak maximum (nm) is indicated.

Fig. S25. IR spectrum of 1.

Fig. S26. IR spectrum of 2.

Fig. S27. IR spectrum of 3.

Fig. S28. IR spectrum of 4.

Atomic coordinates in the optimized structures of dimer 1 and 1, 4 monomers. 66

1 dimer, S0, $E = -1835.54984445$ a.u.				
In	1.921100	0.562900	-0.000200	
0	0.657400	-1.278700	0.000500	
Ν	3.375500	-1.437500	0.000000	
Ν	4.690200	1.030700	-0.000200	
С	2.006000	1.156800	2.079400	
Н	2.723900	0.532500	2.609300	
Н	1.020800	1.033300	2.523700	
Η	2.309700	2.198400	2.178300	
С	2.006000	1.156100	-2.079900	
Н	1.020900	1.032300	-2.524400	
Н	2.724100	0.531900	-2.609700	
Η	2.309300	2.197700	-2.178900	
С	1.214000	-2.451500	0.000200	
С	0.429000	-3.633400	0.000200	
Η	-0.646600	-3.525900	0.000300	
С	1.006600	-4.881200	-0.000000	
Η	0.374900	-5.760800	-0.000100	
С	2.402700	-5.029900	-0.000300	
Η	2.848800	-6.014700	-0.000500	
С	3.196700	-3.905800	-0.000200	
Н	4.271600	-4.027400	-0.000500	
С	2.638100	-2.614700	0.000000	
С	4.657700	-1.378700	0.000300	
Η	5.275700	-2.275400	0.000600	
С	5.388500	-0.116000	0.000200	
С	6.788800	-0.122400	0.000400	
Η	7.323700	-1.062700	0.000700	
С	7.469700	1.083900	0.000300	
Η	8.551500	1.102500	0.000500	
С	6.740400	2.265900	-0.000100	
Η	7.228000	3.230400	-0.000200	
С	5.351100	2.180900	-0.000300	
Н	4.746100	3.080700	-0.000600	
In	-1.921100	-0.562900	0.000200	
0	-0.657400	1.278700	-0.000500	
Ν	-3.375500	1.437500	-0.000000	
Ν	-4.690200	-1.030700	0.000200	
С	-2.006000	-1.156800	-2.079400	
Η	-2.723900	-0.532500	-2.609300	
Н	-1.020900	-1.033300	-2.523700	
Н	-2.309700	-2.198400	-2.178300	
С	-2.006000	-1.156100	2.079900	
Н	-1.020900	-1.032300	2.524400	
Н	-2.724100	-0.531900	2.609700	
Н	-2.309300	-2.197700	2.178900	

С	-1.214000	2.451500	-0.000200
С	-0.429000	3.633400	-0.000200
Н	0.646600	3.525900	-0.000300
С	-1.006600	4.881200	0.000100
Н	-0.374900	5.760800	0.000100
С	-2.402700	5.029900	0.000300
Н	-2.848800	6.014700	0.000500
С	-3.196800	3.905800	0.000300
Н	-4.271600	4.027400	0.000500
С	-2.638100	2.614800	-0.000000
C	-4.657700	1.378700	-0.000300
Н	-5.275700	2.275400	-0.000600
С	-5.388500	0.116000	-0.000100
C	-6.788800	0.122300	-0.000400
Н	-7.323700	1.062700	-0.000700
C	-7.469700	-1.083900	-0.000300
Н	-8 551500	-1 102500	-0.000500
C	-6 740400	-2 265900	0.000100
н	-7 227900	-3 230400	0.000200
C	-5 351100	-2 180900	0.000200
н	-4 746100	-2.100700	0.000500
66	-4.740100	-3.000700	0.000500
1 di	mer $(+D3)$	E = -183	5 62638846 a u
In	-1.866300	0.561600	0.0002038840 a.u.
\mathbf{O}	-1.800500	1 278200	0.000200
N	-0.002000	1 467500	0.000700
N	-5.511500	0.005000	0.000100
C	-4.009500	1 122000	2 083000
с и	-1.903200	0.522400	2.083000
н ц	-2.717000	0.322400	-2.591700
н ц	-0.989300	2 175400	-2.550000
II C	-2.218/00	2.173400	-2.190400
С U	-1.904400	1.122200	2.083200
н Ц	-0.991000	0.940200	2.537500
п u	-2.718300	0.322700 2.175600	2.391300
п	-2.219800	2.173000	2.190300
C C	-1.142900	-2.439300	0.001000
	-0.342000	-3.028000	0.001900
Н	0./31900	-3.506800	0.002300
	-0.904600	-4.883900	0.002200
П	-0.262200	-5./55/00	0.002800
C II	-2.298600	-5.049500	0.001/00
H	-2./32200	-6.039800	0.002000
C	-3.10/400	-3.935300	0.000900
H	-4.180800	-4.069100	0.000700
C	-2.564400	-2.638000	0.000600
C	-4.593000	-1.412300	-0.000900
H	-5.212700	-2.308400	-0.001200
С	-5.318000	-0.145500	-0.001300

С	-6.718100	-0.138200	-0.002300
Н	-7.263300	-1.072600	-0.002700
С	-7.386300	1.075900	-0.002700
Η	-8.467700	1.105600	-0.003400
С	-6.645400	2.251100	-0.002100
Н	-7.123800	3.220200	-0.002400
С	-5.256600	2.152100	-0.001200
Н	-4.639100	3.043300	-0.000700
In	1.866300	-0.561600	0.000200
0	0.602600	1.278200	0.000800
Ν	3.311300	1.467500	0.000000
Ν	4.609500	-0.995000	-0.000900
С	1.964300	-1.122300	2.083200
Н	2.718400	-0.522800	2.591600
Н	0.990900	-0.946300	2.537300
Н	2.219800	-2.175700	2.196400
С	1.963200	-1.121900	-2.083000
Η	0.989600	-0.946000	-2.536600
Н	2.717000	-0.522300	-2.591600
Η	2.218800	-2.175300	-2.196500
С	1.142900	2.459300	0.001200
С	0.342000	3.628600	0.002100
Η	-0.731900	3.506800	0.002500
С	0.904600	4.883900	0.002500
Η	0.262200	5.755700	0.003200
С	2.298600	5.049500	0.002000
Н	2.732100	6.039900	0.002400
С	3.107400	3.935300	0.001200
Η	4.180800	4.069100	0.001000
С	2.564400	2.638000	0.000800
С	4.593000	1.412300	-0.000700
Η	5.212800	2.308400	-0.001000
С	5.318000	0.145500	-0.001300
С	6.718100	0.138200	-0.002200
Η	7.263300	1.072600	-0.002500
С	7.386300	-1.075900	-0.002700
Η	8.467700	-1.105600	-0.003400
С	6.645400	-2.251100	-0.002300
Η	7.123800	-3.220200	-0.002600
С	5.256500	-2.152100	-0.001400
Η	4.639100	-3.043300	-0.001000
33			
1 m	onomer, S0,	E = -917.78	4427637 a.u.
In	0.211100	-1.371700	-0.000300
0	-2.031400	-1.357900	0.001100
Ν	-0.497400	0.877700	0.000200
Ν	2.167600	0.244700	0.000200
С	0.590600	-2.077300	-2.021900

Η	0.369200	-1.281300	-2.732300
Η	-0.046800	-2.932800	-2.242300
Н	1.632600	-2.373100	-2.137000
С	0.592500	-2.080400	2.019900
Н	-0.045100	-2.935800	2.239700
Н	0.372400	-1.285300	2.731700
Н	1.634500	-2.377000	2.133300
С	-2.618600	-0.205300	0.000700
С	-4.035700	-0.101500	0.000800
Н	-4.606100	-1.021200	0.001100
С	-4.665500	1.122500	0.000300
Н	-5.747600	1.165000	0.000400
С	-3.925800	2.318400	-0.000200
Н	-4.431500	3.273900	-0.000700
С	-2.548900	2.260200	-0.000300
Н	-1.982900	3.182000	-0.000800
С	-1.877600	1.025200	0.000200
С	0.367500	1.827900	0.000400
Н	0.082500	2.876400	0.000700
С	1.796000	1.537300	0.000300
С	2.737100	2.569200	0.000400
Н	2.407600	3.598900	0.000600
С	4.086200	2.248600	0.000300
Н	4.833500	3.030000	0.000300
С	4.461300	0.911000	0.000100
Н	5.500500	0.616500	0.000000
С	3.462200	-0.056800	0.000100
Н	3.713100	-1.110300	-0.000100
33			
1 m	onomer, S1,	E = -917.77	4368084 a.u.
In	-0.294800	-1.340500	0.033000
0	2.073800	-1.319800	-0.374000
Ν	0.503100	0.798700	0.029400
Ν	-2.151400	0.249200	0.156900
С	-0.268600	-2.158000	2.048900
Н	0.013500	-1.379400	2.756800
Н	0.449900	-2.974100	2.114700
Н	-1.255300	-2.536300	2.315400
С	-0.790800	-2.114500	-1.938900
Н	-0.119200	-2.931200	-2.201300
Н	-0.685200	-1.319600	-2.676900
Н	-1.817400	-2.479400	-1.958800
С	2.672800	-0.196200	-0.233300
С	4.086200	-0.076800	-0.285000
Н	4.657200	-0.964900	-0.519900
С	4.712000	1.138800	-0.029700
Н	5.790200	1.212000	-0.071100
С	3.949800	2.258000	0.272600

Η	4.426900	3.209300	0.462600
С	2.535800	2.175700	0.319600
Н	1.968900	3.056900	0.588000
С	1.891800	0.999000	0.025000
С	-0.350800	1.779200	-0.160500
Н	-0.014100	2.784200	-0.398700
С	-1.752500	1.538100	-0.084700
C	-2.698400	2.570200	-0.243400
Н	-2.355500	3.576600	-0.443400
C	-4 041500	2 285300	-0 132600
Н	-4.778900	3.067700	-0.247200
C	-4 437600	0.963400	0.130600
Н	-5 479300	0.694500	0.225400
C	-3 454700	-0.007400	0.223100
н	-3 727000	-1 039500	0.250000
33	5.727000	1.057500	0.145200
1 m	onomer T1	F = -017.73	3006653 2 11
In	-0.289400	L = -717.73 -1 327200	0.000000 a.u.
\cap	2 113200	1 361000	0.000000
N	2.113200	-1.301900	-0.000000
IN NI	0.323300	0.794300	0.000000
N C	-2.149100	0.252100	0.000000
	-0.319000	-2.130800	2.007300
П	-0.2/0000	-1.308400	2.740800
Н	0.148300	-2.985/00	2.151400
H	-1.545600	-2.465200	2.168000
C	-0.519000	-2.136800	-2.00/300
H	0.148400	-2.985600	-2.151400
H	-0.276700	-1.368400	-2.740800
Н	-1.545600	-2.465300	-2.168000
С	2.683700	-0.229600	-0.000000
С	4.104400	-0.103200	-0.000000
Н	4.683600	-1.016700	-0.000000
С	4.701600	1.130300	-0.000000
Η	5.779300	1.218100	-0.000000
С	3.906200	2.299300	0.000000
Н	4.391100	3.266600	0.000000
С	2.525100	2.240500	0.000000
Н	1.962700	3.162100	0.000000
С	1.859100	0.999400	0.000000
С	-0.374400	1.816400	-0.000000
Н	-0.052900	2.849000	-0.000000
С	-1.754600	1.544800	-0.000000
С	-2.723900	2.580200	-0.000000
Н	-2.394500	3.610400	-0.000000
С	-4.060200	2.261400	-0.000000
Н	-4.807900	3.042800	-0.000000
С	-4.444500	0.911400	0.000000
Η	-5.484000	0.619200	0.000000

```
С
    -3.448100 -0.054900
                          0.000000
Η
    -3.706400 -1.107400
                          0.000000
35
4 monomer, S0, E = -1122.38542224 a.u.
In
    -1.423600 -1.396600
                          0.000000
0
     0.697900 -2.232400
                         -0.000100
Ν
     0.109900
               0.407600
                         -0.000000
Ν
    -2.592400
               0.844400
                          0.000000
С
    -1.989700 -1.897800
                          2.032700
Η
    -1.489700 -1.221300
                          2.724800
Η
    -1.691800 -2.920500
                           2.259200
Η
    -3.067000 -1.804300
                          2.161700
С
    -1.990100 -1.898000 -2.032500
Η
    -1.692000 -2.920600
                         -2.259000
Η
    -1.490200 -1.221500 -2.724700
Η
    -3.067400 -1.804600 -2.161300
С
     1.670900 -1.404900
                         -0.000100
С
     3.026500 -1.852200
                         -0.000100
Η
     3.201300 -2.919200
                         -0.000100
С
     4.073900 -0.972600
                         -0.000100
Η
     5.094200
               -1.324200
                         -0.000100
С
     3.822300
               0.411600 -0.000000
С
     2.524600
               0.902100 -0.000000
Η
     2.381100
               1.971300
                          0.000000
С
     1.450800
               0.023800 -0.000100
С
    -0.322000
               1.613700
                         -0.000100
Η
     0.342900
               2.473400
                         -0.000100
С
    -1.754400
                1.895800
                         -0.000100
С
    -2.220800
                3.209600
                         -0.000100
Η
    -1.518800
                4.031600
                         -0.000100
С
    -3.590500
                3.434600
                         -0.000000
Η
    -3.978800
                4.443400
                          -0.000100
С
    -4.449900
               2.345100
                          0.000000
Η
    -5.522400
                2.473400
                          0.000000
С
    -3.902500
                1.065000
                          0.000000
Η
    -4.541300
                0.190800
                          0.000100
Ν
     4.923100
                1.336900
                          0.000000
0
     4.683700
               2.547100
                          0.000100
Ο
     6.070900
               0.886700
                          0.000000
35
4 monomer, S1, E = -1122.37793022 a.u.
In
    -1.527400 -1.291400
                          0.000100
0
     0.736800 -2.238100
                         -0.001700
Ν
     0.071800
               0.350800
                         -0.000300
Ν
               0.860700
    -2.608400
                          0.000700
С
    -1.987200 -1.948600
                          2.018600
Η
    -1.456000 -1.321300
                          2.733500
Η
    -1.680400 -2.984200
                          2.157200
```

Η	-3.057700	-1.868700	2.204600
С	-1.989900	-1.947800	-2.017900
Н	-1.683300	-2.983300	-2.157400
Η	-1.459700	-1.320300	-2.733300
Н	-3.060700	-1.867800	-2.202500
С	1.695200	-1.417500	-0.001200
С	3.056600	-1.856900	-0.001400
Н	3.237700	-2.922100	-0.002400
С	4.095400	-0.955500	-0.000200
Н	5.123500	-1.280800	-0.000400
С	3.801200	0.407300	0.001100
С	2.479500	0.903000	0.001200
Н	2.339800	1.971000	0.002500
С	1.419900	0.022700	-0.000100
С	-0.343700	1.608400	-0.001400
Н	0.351700	2.439900	-0.002900
С	-1.729800	1.910900	-0.000900
С	-2.198500	3.242100	-0.001900
Н	-1.483900	4.053900	-0.003200
С	-3.553900	3.486100	-0.001300
Н	-3.927100	4.500800	-0.002000
С	-4.441500	2.400300	0.000400
Н	-5.511600	2.545400	0.001000
С	-3.914800	1.115400	0.001300
Н	-4.572600	0.254500	0.002500
Ν	4.893600	1.357800	0.002200
0	4.614400	2.558400	0.003100
0	6.049500	0.932200	0.002300
35			
4 m	onomer, T1,	E = -1122.3	2561489 a.u.
In	-1.501600	-1.304600	0.000100
0	0.732400	-2.262800	0.000600
Ν	0.095200	0.336000	0.000200
Ν	-2.585900	0.864200	-0.000200
С	-1.984000	-1.943000	2.019100
Н	-1.429300	-1.336300	2.733700
Н	-1.716100	-2.989300	2.157200
Н	-3.050600	-1.823000	2.205200
С	-1.983000	-1.943500	-2.018800
Н	-1.715500	-2.990000	-2.156400
Н	-1.427600	-1.337400	-2.733400
Н	-3.049400	-1.823100	-2.205700
С	1.683100	-1.443800	0.000400
C	3.051000	-1.866700	0.000400
H	3.243400	-2.930100	0.000700
Ċ	4.070100	-0.962300	0.000000
H	5.101600	-1.276400	0.000000
Ċ	3.769300	0.421600	-0.000400

С	2.481700	0.915300	-0.000400
Н	2.334600	1.981600	-0.000700
С	1.392100	0.015700	0.000000
С	-0.337300	1.637800	0.000300
Η	0.362400	2.461400	0.000600
С	-1.712800	1.920200	0.000100
С	-2.200300	3.251800	0.000300
Η	-1.494800	4.071000	0.000600
С	-3.556300	3.478700	0.000200
Н	-3.941000	4.489300	0.000300
С	-4.433000	2.386100	-0.000200
Н	-5.504300	2.520700	-0.000300
С	-3.892000	1.105000	-0.000400
Η	-4.541000	0.237500	-0.000600
Ν	4.876200	1.366400	-0.000700
0	4.618600	2.568100	-0.001000
0	6.022900	0.921000	-0.000800