Core–Shell Structured Carbon @ Tin Sulfide @Hard Carbon Spheres as High-Performance Anode for Low Voltage Sodium-Ion Battery

Yueyang WANG, Yulin MAO, Qinglu YU, Guichuan XING, Qingyuan LI* and Guoxing SUN*

Y. Y. Wang, Y. L. Mao, Q. L. Yu, G. C. Xing, Q. Y. Li, and Prof. G. X. Sun Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.

Email: Qingyuan.li1@mail.wvu.edu, gxsun@um.edu.mo

Materials and Methods

Materials. Thioacetamide (Sigma), Stannous chloride dihydrate (Sigma), Anhydrous ethanol (Shanghai Hushi)

Synthesis of Sn_xS_y@HCS

SnS nanoarrays on hard carbon spheres ($Sn_xS_y@HCS$) were synthesized via a chemical bath deposition (CBD) method. In a typical synthesis, 0.05 mol of $SnCl_2 \cdot 2H_2O$ and 0.15 mol of thioacetamide were dissolved in 240 mL of nitrogensaturated ethanol within a glass container. The mixture was sonicated for 5 min to ensure complete dissolution, resulting in a clear solution. Subsequently, 2 grams of the hard carbon spheres (HCS) were introduced into the solution. The deposition process was conducted at 40 °C for 2 h, during which the initially transparent solution gradually turned opaque and brown. Upon completion, the reaction mixture was allowed to cool to room temperature (20–25°C), and the resulting $Sn_xS_y@HCS$ was thoroughly washed with deionized water and ethanol. The final product was dried under vacuum at 60 °C.

Synthesis of C@Sn_xS_y@HCS

To prepare C@Sn_xS_y@HCS, the as-synthesized Sn_xS_y@HCS was immersed in 80 mL of a 0.1 M aqueous glucose solution at ambient conditions for 6 h. Without any further washing, the material was dried at room temperature and subsequently annealed at 300 °C for 1 h under an argon atmosphere, yielding the C@Sn_xS_y@HCS composite.

Materials Characterizations

The morphology of samples was characterized using a Scanning Electron Microscope (SEM) (Zeiss Sigma FESEM). X-ray diffraction (XRD) (Rigaku SmartLab 9 kW, tube voltage: 40 kV, current: 200 mA) with Cu K α radiation (λ =0.15418 nm) was used as a structure characterize method. The specific surface area was detected through Micromeritics 3Flex# 350/00002/00. The molecular vibration and the rotation information of samples was qualitatively analyzed by confocal Raman microscopy (Thermo Fisher Scientific DXR3) with a 532 nm laser excitation. The elements of the electrode were characterized using X-ray photoelectron spectroscopy (XPS, ESCALAB 250i) under nitrogen protection.

Electrochemical Measurement

The HCS, $Sn_xS_y@HCS$ and $C@Sn_xS_y@HCS$ powders were mixed with conductive carbon black (EC 600JD) and polyvinylidene fluoride (PVDF) in a mass ratio of 8:1:1, followed by drying in a vacuum oven at 80 °C for 12 hours. The electrodes were then assembled into CR2025-type coin cells in an argon-filled glove box, using 160 µL of 1 mol L⁻¹ NaPF₆ in diglyme as the electrolyte, Whatman GF/D glass-fiber separators, and 16 mm sodium sheets with aluminum foil as the current collector.

Charge-discharge tests and galvanostatic intermittent titration technique (GITT) measurements were performed using a NEWARE BTS4000 system at 30 °C, within a potential window of 0.01-2.5 V. The sodium-ion diffusivity coefficient (D_{Na}^+) was calculated based on a simplified form of Fick's second law:

$$D^{GITT} = \frac{4}{\Pi \tau} \left(\frac{m_B V_m}{M_B S} \right)^2 \left(\frac{\Delta E_S}{\Delta E_t} \right)^2$$

where τ is the pulse duration (s), m_B is the active mass of anodes (g), M_B is the molar mass of hard carbon (g mol⁻¹), V_m is the molar volume (cm³ mol⁻¹), and S is the active

surface area of the anodes (m² g⁻¹). Additionally, ΔEs 10 min) and $\Delta E\tau$ (180 min) can be obtained from the GCD of GITT curves. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements, with a frequency range from 0.01 Hz to 100,000 Hz, were conducted using a CHI660E electrochemical workstation. The current densities for all electrochemical tests were normalized based on the active mass of the anodes.

Figure S1 EDS analysis of a) HCS and b) $Sn_xS_y@HCS$.

Figure S2 fitting of Raman spectrum. a) HCS. b) $C@Sn_xS_y@HCS$.

Figure S3 a) TGA and b) DTG curves of $C@Sn_xS_y@HCS$

Figure S4 XPS full spectrum.

Figure S5 Cycle performance of C@ Sn_xS_y @HCS in 1 M NaClO₄ in EC:PC:DMC = 1:1:1 electrolyte.

Figure S6 The thickness evolution of the hard carbon anode.

Figure S7 Fitting results of Nyquist plots, and values of R_{SEI} and R_{ct} . a) Pristine. b) 10 cycles. c) 20 cycles. d) 50 cycles. e) 100 cycles.