Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Electronic Supplementary Information

Deprotonation of –NH Proton from Pyrrole Moiety Enables Concentration Dependent Colorimetric and Fluorescence Quenching of Silver (I) ions

Dhakshinamurthy Divya^{a,b}, Manivannan Nandhagopal^c, Sathiah Thennarasu^{b*}

^a Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, Tamil Nadu, India.

^b Organic and Bioorganic Chemistry Laboratory, CSIR – Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India.

^c Saveetha Medical College and Hospital, Institute of Medical and Technical Science, Thandalam, Chennai 602105, Tamil Nadu, India.

*Corresponding author: Prof. Sathiah Thennarasu (E-mail: thennarasu@gmail.com)

Figure No	Content	Page No
S1	¹ H NMR spectra of ligand (1) in CDCl ₃ .	S2
S2	¹³ C NMR spectra of ligand (1) in CDCl ₃ .	S2
S3	HRMS spectra of ligand (1) in CH ₃ CN.	S3
S4	Steady state fluorescence of ligand (1) and its spiked samples containing biological sample.	\$3
S5	Steady state fluorescence of ligand (1) and its spiked samples containing environmental sample.	S4
S6	Steady state fluorescence of ligand (1) and its spiked samples containing industrial sample.	S4
S7	Fluorescence emission response of 1 with successive additions of Ag ⁺ and EDTA.	S5
S8	Ligand (1)-coated silica plates as a tool for <i>point-of-care-testing</i> devices prompting naked-eye detection showing the color change in the ligand (1) upon interaction with Ag ⁺ ions under sunlight.	S5
Table S1	Comparison of LOD, Ka, Stoichiometry and applications of ligand (1) with similar data reported for other chemosensors.	S5
	References	S6

Electronic Supplementary Information

Figure S1. ¹H NMR spectra of ligand (1) in CDCl₃.

Figure S2. ¹³C NMR spectra of ligand (1) in CDCl₃.

Figure S3. HRMS spectra of ligand (1) in CH₃CN.

Figure S4 Steady state fluorescence of ligand (1) 5.07 μ M and its spiked samples containing biological sample (BS).

Figure S5: Steady state fluorescence of ligand (1) 5.07 μ M and its spiked samples containing environmental sample (ES).

Figure S6: Steady state fluorescence of ligand (1) 5.07 μ M and its spiked samples containing industrial sample (IS).

Figure S7: Fluorescence emission response of 1 with successive additions of Ag^+ and EDTA.

Figure S8: Ligand (1)-coated silica plates as a tool for *point-of-care-testing* devices prompting nakedeye detection showing the color change in the ligand (1) upon interaction with Ag^+ ions under sunlight.

Table S1: Comparison of limit of detection, binding constant, stoichiometry, and applications

 of ligand (1) with similar data reported for other chemosensors.

Name	1 /2	LOD	K _a	Stoichiometry Ligand:metal	Applications
1- Benzylidenethio semicarbazide	2	0.2 μM		1:1	Water samples [1]
Thiosemicarbazi de	2	6.13 nM		1:2	Teststrips,Watersamples,ImagingMCF7 cells [2]
Isocyanate naphthalene based derivative	2	2.87 nM		1:2	Real sample analysis, Test strips and Bioimaging [3]

Semicarbazone based Schiff	2	7.7 μM			Water samples [4]
base					
Thiosemicarbaz one based Schiff	1	2.2 μΜ	2.8×10 ⁹ M ²	1:2	Real sample analysis [5]
base	2	16	-		
~ 1 1	2	1.6 µM			
Carbazole- Rhodanine based derivative	2	12.8 nM	3.8×10 ⁴ M ⁻¹	1:1	Imaging HeLa cells [6]
Octapamine					
based Schiff	2	1.49 µM	7.00×10^4	1:1	NR [7]
base					
Thiourea derivative	2	8×10 ⁻⁷ M	1.8×10 ⁸ M ⁻²	1:2	NR [8]
p-aminoben zoic acid and p- amin ophenol based carbon dots	2	1.4 μM	NR	NR	Real sample analysis [9]
1	1	3.08 nM	1.73×10 ⁶ M ⁻¹	2:1	Test strips, water analysis, and imaging of onion epidermal cells
	2	0.57 nM	1.73×10 ⁶ M ⁻¹		(this work)

1=UV and 2=fluorescence method, NR=not reported

References

- Z. Hejrian Nezhad, A. Bazmandegan-Shamili, S. Saeednia, M. Rohani Moghadam, Novel Fluorescent Determination of Silver Ion in Water Samples Using the Schiff Base 1-Benzylidenethiosemicarbazide, Anal Lett (2024) 1–11. https://doi.org/10.1080/00032719.2024.2318652.
- [2] K.B. Hiremath, M. Shivashankar, A selective fluorescence chemosensor: Thiosemicarbazide Schiff base derivative for detection of Ag+ ions in living cells, J Mol Struct 1302 (2024) 137490. https://doi.org/10.1016/j.molstruc.2024.137490.
- [3] T. Johny Dathees, G. Narmatha, G. Prabakaran, S. Abisha Nancy, A. Abiram, A.I. Almansour, R. Suresh Kumar, A. Thangamani, R. Nandhakumar, Dipodal unsymmetrical diuryl conjugated naphthalene: A fluorescent chemosensor for silver ions and its practical applications, J Photochem Photobiol A Chem 458 (2025) 115986. https://doi.org/10.1016/j.jphotochem.2024.115986.
- [4] P. Sharma, M. Ganguly, A. Doi, Complexation–reduction method for the evolution of nanoparticles to detect Ag+ and Cu2+: a synergistic approach, Appl Nanosci 14 (2024) 739–751. https://doi.org/10.1007/s13204-024-03042-1.
- [5] M. Sahu, A. Kumar Manna, K. Rout, J. Mondal, G.K. Patra, A highly selective thiosemicarbazone based Schiff base chemosensor for colorimetric detection of Cu2+

Electronic Supplementary Information

and Ag+ ions and turn-on fluorometric detection of Ag+ ions, Inorganica Chim Acta 508 (2020) 119633. https://doi.org/10.1016/J.ICA.2020.119633.

- [6] D.B. Christopher Leslee, S. Karuppannan, M.V. Karmegam, S. Gandhi, S. Subramanian, A Fluorescent Turn-On Carbazole-Rhodanine Based Sensor for Detection of Ag+ Ions and Application in Ag+ Ions Imaging in Cancer Cells, J Fluoresc 29 (2019) 75–89. https://doi.org/10.1007/S10895-018-2312-6/METRICS.
- [7] J.H. Kang, J.B. Chae, C. Kim, A multi-functional chemosensor for highly selective ratiometric fluorescent detection of silver(I) ion and dual turn-on fluorescent and colorimetric detection of sulfide, R Soc Open Sci 5 (2018). https://doi.org/10.1098/RSOS.180293.
- [8] H. Mu, R. Gong, L. Ren, C. Zhong, Y. Sun, E. Fu, An intramolecular charge transfer fluorescent probe: Synthesis and selective fluorescent sensing of Ag+, Spectrochim Acta A Mol Biomol Spectrosc 70 (2008) 923–928. https://doi.org/10.1016/J.SAA.2007.10.006.
- [9] Y. Ma, W. Lv, Y. Chen, M. Na, J. Liu, Y. Han, S. Ma, X. Chen, Facile preparation of orange-emissive carbon dots for the highly selective detection of silver ions, New Journal of Chemistry 43 (2019) 5070–5076. https://doi.org/10.1039/C8NJ06109B.