Controllable modification of the $In^{\delta+}-O_v$ interface on In_2O_3

for efficient carbon dioxide hydrogenation to methanol

Ying Wang, Xinyu Ma, Bo Cheng, Jiandong Ling, Yushuang Hu, Shijian Zhou*, Yan Kong*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China. Shijian Zhou:

E-mail: zshijian@njtech.edu.cn.

Yan Kong:

E-mail: kongy36@njtech.edu.cn.

The specific surface area of the catalyst was calculated by N₂ adsorption and desorption characterization (Fig. S1) and BET equation. The specific surface area of CP-In₂O₃-N₂ is calculated to be 95.5 m²g⁻¹, which is slightly larger than that of H-In₂O₃-O₂ and H-In₂O₃-N₂ prepared by the hydrothermal method. The C-In₂O₃-N₂ sample has a specific surface area of only 24.7 m²g⁻¹. The data are presented in Table S1.

Table S1 shows that all catalysts show a small increase in grain size after high temperature and pressure reaction due to the occurrence of different degrees of agglomeration of In_2O_3 . Meanwhile, the catalyst grain sizes after all four reactions are in the range of 16-23 nm. In particular, the grain sizes of CP-In₂O₃-N₂, H-In₂O₃-O₂ and H-In₂O₃-N₂ are smaller. It is shown that In_2O_3 is very stable at high temperatures and has good sintering resistance.

Fig. S1 Nitrogen adsorption-desorption isotherm of different In₂O₃ catalysts.

Sample	BET surface area	In ₂ O ₃ crystal size (nm) ^[b]	
	(m²/g) ^[a]	fresh	used
C-In ₂ O ₃ -N ₂	24.7	17.0	22.3
CP-In ₂ O ₃ -N ₂	95.5	9.0	17.2
H-In ₂ O ₃ -O ₂	83.6	10.3	16.7
H-In ₂ O ₃ -N ₂	76.1	9.5	18.4

Table S1 Basic structure property of catalysts.

[a] BET specific surface area was obtained by N2 adsorption-desorption tests.

[b] Calculated from XRD data using the Scherrer equation.

The morphology and structure of the sample after reaction are analyzed using field emission scanning electron microscopy (FE-SEM) and high-resolution projection electron microscopy (HRTEM). The experimental results are shown in Fig. S2. From the SEM images (Fig. S2(a-b)), it can be seen that the morphology of CP-In₂O₃-N₂ and H-In₂O₃-N₂ are similar, with fluffy and stacked nanoparticle structures. The HRTEM images (Fig. S2(c-d)) show an average particle size of about 20.0 nm for both samples, which is consistent with the grain size calculated by the Scherrer's formula above. Moreover, the stripe spacing d=0.253 and 0.293 nm correspond to the (400) and (222) crystal faces of cubic phase In₂O₃, respectively. It should be noted that some amorphous In₂O_{3-X} components can be clearly found in the middle and edges of the sample in the HRTEM image. This is due to the continuous between the crystalline and amorphous states as the reaction time increases. The formation of molten In⁰ species gradually occupy the surface. In addition, TSoukalou et a.¹ reported that the molten In⁰ species are highly correlated with the formation of oxygen vacancies on the catalyst surface.

Fig. S2 (a) SEM image of CP-In₂O₃-N₂, (b) SEM image of H-In₂O₃-N₂, (c) HRTEM image of CP-In₂O₃-N₂, (d) HRTEM image of H-In₂O₃-N₂.

 A. Tsoukalou, P. M. Abdala, D. Stoian, X. Huang, M.-G. Willinger, A. Fedorov and C. R. Mueller, *Journal of the American Chemical Society*, 2019, **141**, 13497-13505.