Supplementary Information (SI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Experimental Section

Materials: Cobalt(II) nitrate hexahydrate (Co(NO₃)₂) and ammonium fluoride (NH₄F) were purchased from Alfa-Aesar and directly used without purification. The carbon cloth was purchased from Japan Toray Company. Sodium nitrate (NaNO₃, 99.0%), sodium nitrite (NaNO₂, 99.0%), ammonium chloride (NH₄Cl), sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium salicylate (C₇H₅NaO₃), trisodium citrate dihydrate (C₆H₅Na₃O₇·2H₂O), p-dimethylaminobenzaldehyde (C₉H₁₁NO), sodium nitroferricyanide dihydrate (Na₂Fe(CN)₅NO·2H₂O), 0.8wt% sulfamic acid solution (H₃NO₃S), sodium dihydrogen phosphate dihydrate (NaH₂PO₄), disodium hydrogen phosphate dodecahydrate (Na₂HPO₄) and sodium hypochlorite solution (NaClO) were purchased from Aladdin Ltd. (Shanghai, China). Ultrapure water used throughout all experiments was purified through a Millipore system.

Characterizations: The crystallinity and composition of the synthesized samples were characterized by X-ray diffraction (XRD; Rigaku Co.) with Cu K α radiation (λ = 1.5406 Å) and X-ray photoelectron spectroscopy (XPS; ESCALAB250Xi, Thermo Fisher Scientific). The morphological features and detailed structural information were conducted by field-emission scanning electron microscopy (FESEM; GeminiSEM, Zeiss), and transmission electron microscopy (TEM; JEOL JEM-2100F). High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) was carried out using a JEOL JEMARM200F STEM/TEM (resolution of 0.08 nm). The absorbance data of spectrophotometer were acquired on SHIMADZU UV-1800 UV-Vis spectrophotometer.

Synthesis of Carbon Paper @ Co_3O_4 : A hydrothermal solution was prepared by mixing 2 mmol Co(NO₃)₂, 4 mmol NH₄F, 10 mmol urea, and 60 mL of deionized (DI) water. The solution was stirred continuously for 5 minutes and then transferred into Teflon-lined stainless steel autoclave liners. A piece of pressed nickel foam, cleaned with ethanol and DI water, was immersed in the reaction solution. To serve as a current collector, part of the substrate was shielded from contamination using a uniform coating of polytetrafluoroethylene tape. The autoclave was sealed and maintained at 120 °C for 6 hours. Afterward, the samples were washed with DI water, dried at 60 °C in an oven, and annealed in a furnace under an argon atmosphere at 300 °C for 2 hours, resulting in the formation of Co₃O₄.

Synthesis of Carbon Paper @ $N-Co_3O_4$: The Co_3O_4 obtained above was subjected directly to nitrogen RF plasma treatment at room temperature to synthesize $N-Co_3O_4$. The plasma discharge was conducted at 200 W power and 13.56 MHz frequency for 20 seconds.

Electrochemical measurements: NO_3^- reduction experiments were carried out in a two-compartment cell under ambient condition, which was separated by Nafion 117 membrane. The membrane was protonated by first boiling in ultrapure water for 1 h and treating in H₂O₂ (5 wt%) aqueous solution at 80 °C for another 1 h, respectively. And then, the membrane was treaded in 0.5 M H₂SO₄ for 3 h at 80 °C and finally in water for 6 h. The electrochemical experiments were carried out with an electrochemical workstation (CHI 660E) using a three-electrode configuration with prepared electrodes, graphite rod and Ag/AgCl electrode (saturated KCl electrolyte) as working electrode, counter electrode and reference electrode, respectively. The potentials reported in this work were converted to reversible hydrogen electrode (RHE) scale via calibration with the following equation: E (vs. RHE) = E (vs. Ag/AgCl) + $0.059 \times pH + 0.197$ V and the presented current density was normalized to the geometric surface area. For electrochemical NO₃⁻ reduction, chrono-amperometry tests were conducted in 1 M KOH solution with 0.1 M NO₃⁻.

Determination of NH₃: Owing to the large concentration of solution, the obtained reaction solutions were diluted 100 times. Specifically, 4 mL electrolyte was obtained from the cathodic chamber and mixed with 50 μ L oxidizing solution containing NaClO (ρ Cl = 4 ~ 4.9) and NaOH (0.75 M), 500 μ L coloring solution containing 0.4 M C₇H₆O₃Na and 0.32 M NaOH, and 50 μ L catalyst solution (1 wt% Na₂[Fe(CN)₅NO]) for 2 h. Absorbance measurements were performed at 654 nm. The concentration-absorbance curve was calibrated using standard NH₃ solution with a series of concentrations. The fitting curve (y = 0.31647 x + 0.03549, R² = 0.999) shows good linear relation of absorbance value with NH₃ concentration.

In addition, ¹H NMR spectroscopy (600 MHz) was also used to detect ammonia in the isotope-labelling measurement. The collected NH₃ sample was first diluted to the detection range and adjust to pH 1.0 by adding 0.1 M HCl. Next, 0.5 ml of the sample solution was mixed 0.1ml DMSO-d₆.

Determination of NO₂: Owing to the large concentration of solution, the obtained reaction solutions were diluted 20 times. The NO₂⁻ concentration was analyzed using the Griess test.¹ The Griess reagent was prepared by dissolving 0.1 g N-(1-naphthyl) ethylenediamine dihydrochloride, 1.0 g sulfonamide and 2.94 mL H_3PO_4 in 50 mL

deionized water. In a typical colorimetric assay, the 1.0 mL Griess reagent was mixed with the 1.0 mL nitrite-containing solution and 2.0 mL H₂O and allowed to react at room temperature for 10 min, in which sulfonamide reacts with NO₂⁻ to form a diazonium salt and then further reacts with amine to form an azo dye (magenta). The absorbance at 540 nm was measured to quantify the NO₂⁻ concentration with a standard curve of NO₂⁻ (y = 0.5391x + 0.0106, R² = 0.999).

Determination of FE and NH₃ yield: The FE for NO_3^- reduction was defined as the amount of electric charge used for synthesizing NH₃ divided the total charge passed through the electrodes during the electrolysis. The total amount of NH₃ produced was measured using colorimetric methods. Assuming eight electrons were needed to produce one NH₃ molecule, the FE could be calculated as follows:

$$FE = 8 \times F \times [NH_3] \times V / (17 \times Q) \times 100\%$$
(1)

NH₃ yield was calculated using the following equation:

$$NH_3$$
 yield rate= $[NH_3] \times V / (s \times t)$ (2)

where F is the Faraday constant, $[NH_3]$ is the measured NH_3 concentration, V is the volume of the electrolyte in the cathodic chamber, Q is the total quantity of applied electricity; t is the reduction time; s is the electrode area.

Computational Details: All the calculations were implemented in the VASP package by employing density functional theory (DFT) with spin-polarized Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional.^{1,2} The cutoff energy of plane-wave basis set is 400 eV, and the $(2\times2\times1)$ grid sampling was used for Brillouin zone integration of Co₃O₄ (110) slab, respectively. The DFT+U method was adopted to describe the Co 3*d* electrons with an effective U value of 2 eV.^{3,4} The convergence criteria of energy and force for structural optimization were set to 1×10^{-5} eV and 0.02 eV/Å, respectively. All the slabs were repeated periodically with a 20 Å vacuum layer between the images in the direction of the surface normal.

Fig. S1. UV-Vis absorption spectra of N-Co₃O₄.

Fig. S2. (a) UV-vis absorption spectra of indophenol assays with NH_3 concentrations after incubated for 2 h at room temperature. (b) Calibration curve used for estimation of NH_3 concentration.

Fig. S3. The comparison of NH_3 production amount on N-Co₃O₄/CC, Co₃O₄/CC and bare CC.

Fig. S4. (a) UV-Vis absorption spectra of different NO_2^- concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for estimation of NO_2^- concentration.

Fig. S5. NO_2^- yield rates over N-Co₃O₄/CC at each given potentials.

Fig. S6. XPS spectrum in Co 2p region on Co₃O₄/CC after NO₃RR.

Fig. S7. XPS spectrum in Co 2p region on N-Co₃O₄/CC after NO₃RR.

Fig. S8. Co K-edge XANES spectra of N-Co₃O₄ after NO₃RR. It shows that the Co valence state slightly decreases after NO₃RR.

Fig. S9. The Fourier transform EXAFS spectra for N-Co₃O₄ after NO₃RR.

Fig. S10. The atom configurations of NO₃ and H adsorptions on Co_3O_4 (110) and N- Co_3O_4 (110), respectively.

Fig. S11. Adsorption energies of NO₃ and H on Co atom site on pure Co_3O_4 (111) surface. (a) Atomic configuration of Co_3O_4 (111) surface. (a,b) Adsorption energies of NO₃ on Co atom sites. (a,b) Adsorption energies of H on Co atom sites.

Fig. S12. Adsorption energies of NO₃ and H on Co atom site on N-doped Co₃O₄ (111) surface. (a) Atomic configuration of N-Co₃O₄ (111) surface. (a,b) Adsorption energies of NO₃ on Co atom sites. (a,b) Adsorption energies of H on Co atom sites.

We recalculated the adsorption energies of H and NO₃ on the Co₃O₄ (111) surface, Fig. S11. Our results indicate that the Co₃O₄(111) surface features two distinct Co atomic sites, S1 and S2, corresponding to four-coordinated Co (Co₄c) and three-coordinated Co (Co₃c), respectively. Both NO₃ and H preferentially adsorb on the Co₄c site of S1 due to their exothermic adsorption energies. Notably, the adsorption energies of NO₃ and H at S1 are quite close, with NO₃ being slightly more favorable, suggesting intense competitive adsorption relationship between these species on pure Co₃O₄(111) surface.

As introducing N doping into the $Co_3O_4(111)$ surface (Fig. S12), the adsorption energies of NO₃ at the S1 and S2 sites are greatly increased to -3.42 eV and -2.95 eV, respectively, indicating greatly enhanced NO₃ adsorption. In contrast, the adsorption of H became endothermic, suggesting that H adsorption process is significantly suppressed. Thus, above results demonstrate that N doping in the $Co_3O_4(111)$ surface also promotes NO₃ adsorption while inhibiting H adsorption, similar with that $Co_3O_4(110)$ surface.

Fig. S13. The surface energies of Co_3O_4 (110) at different terminated conditions. (a) Type A termination surface. (a) Type B termination surface.

Fig. S14. NO₃RR electrolysis for 13 h on N-Co₃O₄/CC electrode.

Catalyst	Electrolyte	NH ₃ yield rate	FE	Ref.
		(µmol h ⁻¹ cm ⁻² @V vs. RHE)	(%@V vs. RHE)	
N-Co ₃ O ₄	1 M KOH (0.1 M	422@ -0.35V	96.7 %@ -0.20V	This work
	NO ₃ -)			
CoS ₂ OC	1 M KOH (0.1 M	588@-0.35V	97.5 @ -0.25V	[1]
	NO ₃ -)			
CuCo	1 M KOH (0.1 M	4800 @ -0.2	100 @ -0.2	[2]
	NO ₃ -)			
Co@TiO ₂ /TP	0.1 M PBS (0.1 M	800 @ -0.40V	96.7 @ -0.70V	[3]
	NO ₃ -)			
Co-P/TP	0.2 M PBS (200	24.47 @ -0.6	93.6 @ -0.3	[4]
	ppm NO ₃ -)			
Co ₂ AlO ₄ /CC	0.1 M PBS (0.1 M	464.7 @ -0.9	92.6 @ -0.7	[5]
	NO ₃ -)			
Co/CoO NSA	0.1 M Na ₂ SO ₄ (200	194.46 @ -0.65	93.8 @ -0.65	[6]
	ppm NO ₃ -)			
ZnCo ₂ O ₄ NSA/CC	0.1 M NaOH (0.1	634.74 @ -0.8	98.33 @ -0.6	[7]
	M NO ₃ -)			
CoTiO _{3-x} /CP	1 M KOH (0.1 M	858 @ -1.0	92.6 @ -1.0	[8]
	NO ₃ -)			
NiCo ₂ O ₄ /CC	0.1 M NaOH (0.1	973.2 @ -0.6	99@-0.3	[9]
	M NO ₃ -)			
CoP NAs/CFC	1 M NaOH (1 M	956 @ -0.3	100 @ -0.3	[10]
	NO ₃ -)			
Mn-Co ₃ O ₄	0.5 M K ₂ SO ₄ (0.1	2058 @ -1.2	99.5 @ -1.2	[11]
	M NO ₃ -)			
Fe ₃ C	0.1 M NaOH	466 @ -0.8	96.9 @ -0.8	[12]

Table S1. Comparison of the catalytic performances of CoS_2 OC with reported Co-based NO₃RR catalysts at ambient conditions.

NPs@NCF	(0.1 M NO ₃ -)			
Cu nanosheets	0.1 M KOH	21.67 @ -0.15 V	99.7 @ -0.15 V	[13]
	(10 mM KNO ₃)			
FeCo ₂ O ₄	0.1 M NaOH	277.1 @ -0.5V	95.9	[14]
	(20 mM NaNO ₃)			
Cu ₅₀ Ni ₅₀	1 М КОН	80.7 @ -0.15	82.0 @ -0.15	[15]
	(100 mM NO ₃ -)			
Fe ₃ O ₄ /PC	0.1 M NaOH	394.8 @ -0.4	91.6 @ -0.4	[16]
	(0.1 M NO ₃ -)			

REFERENCES

- W. Li, P. Wang, P. Wang, H. Liu, C. Wu, Y. Liu, J. Huang, Z. Fang, H. Guo, Y. Zhang, F. Li, T. Wu and X. Sun, Octahedral CoS₂ electrocatalysts for efficient nitrate reduction to ammonia, *Inorg. Chem. Front.*, 2024, **11**, 7118.
- [2] J. Fang, Q. Zheng, Y. Lou, K. Zhao, S. Hu, G. Li, O. Akdim, X. Huang and S. Sun, Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature, *Nat. Commun.*, 2022, 13, 7899.
- X. Fan, D. Zhao, Z. Deng, L. Zhang, J. Li, Z. Li, S. Sun, Y. Luo, D. Zheng, Y. Wang, B. Ying, J. Zhang, A. A. Alshehri, Y. Lin, C. Tang, X. Sun and Y. Zheng, Constructing Co@TiO₂ nanoarray heterostructure with schottky contact for selective electrocatalytic nitrate reduction to ammonia, *Small*, 2023, 19, 2208036.
- [4] Z. Li, G. Wen, J. Liang, T. Li, Y. Luo, Q. Kong, X. Shi, A. M. Asiri, Q. Liu and X. Sun, High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt - phosphorus alloy film, *Chem. Commun.*, 2021, 57, 9720.
- [5] Z. Deng, J. Liang, Q. Liu, C. Ma, L. Xie, L. Yue, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, A. A. Alshehri, I. Shakir, P. O. Agboola, S. Yan, B. Zheng, J. Du, Q. Kong and X. Sun, High-efficiency ammonia electrosynthesis on self-supported

Co₂AlO₄ nanoarray in neutral media by selective reduction of nitrate, *Chem. Eng. J.*, 2020, **435**, 135104.

- [6] Y. Yu, C. Wang, Y. Yu, Y. Wang and B. Zhang, Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts, *Sci. China Chem.*, 2020, **63**, 1469.
- [7] Z. Li, J. Liang, Q. Liu, L. Xie, L. Zhang, Y. Ren, L. Yue, N. Li, B. Tang, A. A. Alshehri, M. S. Hamdy, Y. Luo, Q. Kong and X. Sun, High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo₂O₄ nanosheet array, *Mater. Today Phy.*, 2022, 23, 100619.
- [8] X. Fan, J. Liang, L. Zhang, D. Zhao, L. Yue, Y. Luo, Q. Liu, L. Xie, N. Li, B. Tang, Q. Kong and X. Sun, Enhanced electrocatalytic nitrate reduction to ammonia using plasma-induced oxygen vacancies in CoTiO_{3-x} nanofiber, *Carbon Neutralization*, 2022, 1, 6.
- [9] Q. Liu, L. Xie, J. Liang, Y. Ren, Y. Wang, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, I. Shakir, P. O. Agboola, Q. Kong, Q. Wang, D. Ma and X. Sun, Ambient Ammonia Synthesis via Electrochemical Reduction of Nitrate Enabled by NiCo₂O₄ Nanowire Array, *Small*, 2022, 18, 2106961.
- S. Ye, Z. Chen, G. Zhang, W. Chen, C. Peng, X. Yang, L. Zheng, Y. Li, X. Ren,
 H. Cao, D. Xue, J. Qiu, Q. Zhang and J. Liu, Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide, *Energy Environ. Sci.*, 2022, 15, 760.
- [11] D. Liu, L. Qiao, Y. Chen, P. Zhou, J. Feng, C. C. Leong, K. W. Ng, S. Peng, S. Wang, W. F. Ip and H. Pan, Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co₃O₄ nanotubes, *Appl. Catal., B*, 2023, 324, 122293.
- [12] X. Liu, T. Xie, Z. Cai, Z. Li, L. Zhang, X. Fan, D. Zhao, S. Sun, Y. Luo, Q. Liu, and X. Sun, Fe₃C nanoparticles decorated 3D nitrogen-doped carbon foam as a highly efficient electrocatalyst for nitrate reduction to ammonia. *J. Electroanal. Chem.*, 2023, **933**, 117295.

- [13] X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M. R. Wasielewski, Y. Kang, Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. *Appl. Mater. Today*, 2020, *19*, 100620.
- [14] J. Li, D. Zhao, L. Zhang, L. Yue, Y. Luo, Q. Liu, N. Li, A. A. Alshehri, M. S. Hamdy, Q. Li, X. Sun, A FeCo₂O₄ nanowire array enabled electrochemical nitrate conversion to ammonia. *Chem. Commun.*, 2022, 58, 4480-4483.
- [15] Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. Nam, C. Tan, Y. Ding, J. Wu, Y. Lum, C. Dinh, D. Sinton, G. Zheng and E. Sargent, Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc., 2020, 142, 5702-5708.
- T. Xie, Z. Cai, X. Liu, J. Li, X. Fan, X. He, Y. Luo, D. Zheng, S, Sun, S. Alfaifi,
 C. Xu, X. Sun, Fe₃O₄ nanoparticle-decorated 3D pinewood-derived carbon for high-efficiency electrochemical nitrate reduction to ammonia. *Chem. Commun.*, 2023, 59, 12322-12325.