Supporting Information

Ball-in-Ball SnO₂/SnS@Void@C as Anode for Enhanced Electrochemical Performances of Li/Na Ion Batteries

Rongguan Lv^a, Bin Xie^b, Xiaoyu Wu^{b*}, Haiyan Yu^a, Qinahui Wu^{c*}, Fang Guo^d, Ming Chen^{b*}

a College of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu, P. R. China b School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China c Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, P. R. China d School of Chemistry and Chemical Engineering, Yancheng Institute of Technology Yancheng 224051, Jiangsu, P. R. China

^{*} Corresponding Authors

E-mail address: wuxiaoyu1116@163.com (X. Wu); 1017241434@qq.com (Q. Wu); chenming@yzu.edu.cn (M. Chen).

1. Experimental Section

1.1 Materials

 $Na_2[Sn(OH)_6]$, urea, resorcinol, formaldehyde, $NH_3 \cdot H_2O$, ethanol, NaOH, and polyvinylidene difluoride (PVDF) were analytical grade and purchased from Shanghai Chemical Corp. All commercially available chemicals and solvents were reagent grade and used as received.

1.2 Materials characterization

Field-emission scanning electron microscopy (FESEM) images were obtained from Hitachi S-4800 (Japan). The Philips TECNAI-12 apparatus was used for transmission electron microscopy (TEM). High-resolution TEM (HRTEM) and highangle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were performed on FEI Tecnai G2 F30 STWIN (USA) operating at 300 kV. On D8 advance superspeed powder diffractometer(Bruker), X-ray diffraction (XRD) data were collected using a graphite monochromator and Cu K radiation (λ = 0.1541 nm). Thermo Escalab 250 equipment was used to acquire X-ray photoelectron spectroscopy (XPS) using Al Ka radiation (hv = 1486.6 eV). After samples were dried at 100 °C for 6 hours, surface areas and pore size distributions were measured using the BET technique in an automated surface area and porosity analyzer (ASAP 2020, HD88) at -196 °C.

1.3 Electrochemical measurement

The anode electrodes were made by dispersing SnO2/SnS@Void@C in n-

methyl-2-pyrrolidone (NMP) at a mass ratio of 8:1:1 with acetylene black, 15% polyvinylidene fluoride (PVDF) binder, and stirring at room temperature for 24 h. The slurry is then evenly applied to the surface of the copper foil and dried at 80 °C for 8 h. Each sample had a mass loading of $0.79 \sim 1.23$ mg cm⁻². The CR 2032 button battery pack with circular lithium and sodium metal sheets as reference electrodes installed in a high purity argon glovebox (Vacuum Co., Ltd.). 1 M LiPF₆ in EC/DMC/EMC (volume ratio 1:1:1) and 1 M NaPF₆ in DOI/DME (volume ratio 1:1) as the battery electrolyte with Celgard 2400 polypropylene as the diaphragm. Cyclic voltammetry (CV) is performed using an electrochemical workstation (CHI660 E, Chenghua, CHN) with a scanning rate of 0.1 mV s⁻¹ and a voltage range of 0.001 V to 3.0 V. To verify rate performances and cycling performances, galvanostatic charge and discharge cycling of the cells were performed using battery test equipment (CT-3008W, Xinwei, CHN) at various voltages ranging from 0.01-3 V (vs. Li⁺/Li) and 0.01-3 V (vs. Na⁺/Na).

Figure S1 Schematic illustration for synthesizing $SiO_2@C$

Figure S2 SEM images of SiO₂@C

Figure S3 SEM images of SnO₂/SnS@Void@C

Figure S4 EDX pattern of SnO₂/SnS@Void@C

Figure S5 TEM image of pure SnO₂

Figure S6 TEM image of pure SnS.

Figure S7 Raman spectrum of SnO₂/SnS@Void@C

Figure S8 XPS survey spectrum of SnO₂/SnS@Void@C

Figure S9 Thermogravimetric analysis (TGA) curve of SnO₂/SnS@Void@C

Figure S10 N_2 adsorption-desorption isotherms and corresponding BJH pore-size distribution curses of (a) SnO₂/SnS@Void@C, (b) SnO₂@Void@C, (c) SnO₂ and (d) SnS.

Figure S11 Nyquist plots (a) before cycling and (b) after 50 cycles of $SnO_2/SnS@Void@C$ and pure SnO_2 for LIBs.

Figure S12 TEM images of SnO₂/SnS@Void@C after 500 cycles for LIBs.

Figure S13 Nyquist plots (a) before cycling and (b) after 50 cycles of

SnO₂/SnS@Void@C and pure SnS for SIBs.

Figure S14 TEM images of SnO₂/SnS@Void@C after 500 cycles for SIBs

Table S1	Comparison	of electrochemical	performance	of SnO ₂ /SnS@Void@C as
----------	------------	--------------------	-------------	------------------------------------

Sample	Current density (mA g ⁻¹)	After n th cycle	Capacity (mA h g ⁻¹)	References
SnO ₂ /SnS@C	5000	500	415	This work
SnO_2 nanotubes	100	30	468	J. Am. Chem. Soc., 2010, 132, 46-47
Nanoparticle(Sn-MOFs)	400	100	541	Nanoscale, 2014, 6, 3217-3222.
Mesoporousspheres	1000	50	370	RSC Adv., 2015, 5, 49926- 49932
SnO ₂ @Cyolk–shell nanospheres	625	100	630	Nanoscale, 2014, 6, 3217
SnO ₂ /N-Carbon	100	100	750	Nano-Micro Lett. (2018) 10:21
	/carbon 200	400	1089.5	Electrochimica Acta 307 (2019)
porous SnO ₂ /carbon				393-402

.

anode in LIBs with other Sn based sulfides and oxides in literatures

Sample	Current density (mA g ⁻¹)	After n th cycle	Capacity (mA h g ⁻¹)	References
SnO ₂ /SnS@C	5000	500	303	This work
MoS ₂ S-doped graphene	1000	1000	309	Adv. Funct. Mater. 2017, 27 (40)
$\mathrm{Co}_9\mathrm{S}_8$ hollow carbon and rGO	300	500	628	Adv. Funct. Mater. 2017, 27 (38).
NiS_2 nanoparticles	500	300	356.2	J. Mater. Chem. A 2018 , 6 (15), 6595-6605
WS ₂ /MoS ₂ @carbon	500	250	411.8	Chem. Eng. J. 2022, 443.
ReS ₂ @NiS ₂	1000	400	220	<i>Chinese Chemical Letters</i> 2021, <i>32</i> (11), 3607-3612.
MnS-CoS ₂ -NC@NC	1000	900	436	Nano Research 2022, 15 (4), 3273-3282

 Table S2 Comparison of electrochemical performance of SnO₂/SnS@Void@C as

anode in SIBS with other metal sulfides in literature	anode in	SIBs with	other metal	l sulfides in	literatures
---	----------	-----------	-------------	---------------	-------------