Impact of paramagnetic Cu^{II} and diamagnetic Zn^{II} ions on singlemolecule magnetism in heterodinuclear 3d–4f complexes displaying slow relaxation of magnetization

Rakhi Nandy^a Narayan Ch. Jana,^b Marko Jagodič,^c Zvonko Jagličić,^{c,d} Paula Brandão,^e Amrita Saha,^f and Anangamohan Panja^{a,b}

^aDepartment of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata 700020, India, E-mail: ampanja@yahoo.co.in ^bDepartment of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India. ^cInstitute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia ^dUniversity of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova cesta 2, 1000 Ljubljana, Slovenia ^eDepartment of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal ^fDepartment of Chemistry, Jadavpur University, Kolkata 700032, India

Contents

Fig. S1. IR spectra of complexes 1-5
Fig. S2: PXRD spectra of the complexes 1
Fig. S3: PXRD spectra of the complexes 24
Fig. S4: PXRD spectra of the complexes 34
Fig. S5: PXRD spectra of the complexes 45
Fig. S6: PXRD spectra of the complexes 55
Fig. S7. A part of molecular packing showing different non-covalent interactions in 16
Fig. S8. A part of molecular packing showing different non-covalent interactions in 46
Fig. S9. A part of molecular packing showing different non-covalent interactions in 57
Fig. S10. Isothermal magnetization plots for 1-5 at 2 K
Fig. S11. Temperature dependence ac susceptibilities plots for complex 2 at zero dc field
Fig. S12. Frequency dependent out-of-phase ac susceptibility plots of 1-5 at 2 K and at indicated magnetic fields.

Fig. S13. The Cole-Cole plots for 2-5 at indicated magnetic fields
Fig. S14. The orientation of the principal magnetic axis of the ground Kramers doublet on the Dy ^{III} center in complex 1 determined using MAGELLAN program
Fig. S15. The orientation of the principal magnetic axis of the ground Kramers doublet on the Dy ^{III} center in complex 4 determined using MAGELLAN program
Fig. S16. The orientation of the principal magnetic axis of the ground Kramers doublet on the Dy ^{III} center in complex 5 determined using MAGELLAN program
Table S1. X-ray crystallographic data and refinement details for 1-5
Table S2. Bond distances around metal coordination spheres in 1–3
Table S3. Bond distances around metal coordination spheres in 4 and 5
Table S4. Shape analysis around the Ln ^{III} ions in 1-415
Table S5. Shape analysis around the Dy ^{III} ion in 515
Table S6. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 1 by the double-component generalized Debye model at 5 kOe dc field
Table S7. Magneto-structural data on heterobimetallic M-Gd ^{III} (M = 3d ion) systems displaying slow relaxation of magnetization (SRM) with non-Orbach relaxation mechanism17
TableS8: List of important geometrical features and relevant magnetic parameters of heterobimetallic Cu ^{II} Ln ^{III} complexes displaying slow relaxation of Magnetization (SRM)18
References:19

Fig. S1. IR spectra of complexes 1-5.

Fig. S2: PXRD spectra of the complexes 1.

Fig. S3: PXRD spectra of the complexes 2.

Fig. S4: PXRD spectra of the complexes 3.

Fig. S5: PXRD spectra of the complexes 4.

Fig. S6: PXRD spectra of the complexes 5.

Fig. S7. A part of molecular packing showing different non-covalent interactions in 1.

Fig. S8. A part of molecular packing showing different non-covalent interactions in 4.

Fig. S9. A part of molecular packing showing different non-covalent interactions in 5.

Fig. S10. Isothermal magnetization plots for 1-5 at 2 K.

Fig. S11. Temperature dependence ac susceptibilities plots for complex 2 at zero dc field.

Fig. S12. Frequency dependent out-of-phase ac susceptibility plots of 1-5 at 2 K and at indicated magnetic fields.

Fig. S13. The Cole-Cole plots for 2-5 at indicated magnetic fields.

Fig. S14. The orientation of the principal magnetic axis of the ground Kramers doublet on the Dy^{III} center in complex **1** determined using MAGELLAN program.

Fig. S15. The orientation of the principal magnetic axis of the ground Kramers doublet on the Dy^{III} center in complex **4** determined using MAGELLAN program.

Fig. S16. The orientation of the principal magnetic axis of the ground Kramers doublet on the Dy^{III} center in complex **5** determined using MAGELLAN program.

	1	2	3	4	5
Empirical formula	C ₂₄ H ₃₀ CuGdN ₁₄	$C_{24}H_{30}CuN_5O_{14}Tb$	$C_{24}H_{30}CuDyN_5O_4$	$C_{29}H_{33}DyN_6O_{13}Zn$	$C_{31}H_{40}DyN_3O_{11}Zn$
Formula weight	833.32	834.99	838.57	901.48	858.53
Temperature/K	150.00	150.00	150.00	150.00	150.00
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	Triclinic
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_{1}/n$	рl
a/Å	11.0211(14)	10.9930(9)	11.0363(9)	11.7307(9)	11.307(13)
b/Å	17.798(2)	17.7673(13)	17.7751(13)	18.1757(15)	12.824(15)
c/Å	15.593(2)	15.5779(12)	15.5230(11)	15.7891(13)	12.936(16)
α/°	90	90	90	90	91.62(3)
$\beta/^{\circ}$	93.331(4)	92.795(3)	93.085(3)	94.240(3)	113.14(3)
γ/°	90	90	90	90	98.79(3)
Volume/Å ³	3053.5(7)	3039.0(4)	3040.8(4)	3357.2(5)	1696(3)
Ζ	4	4	4	4	2
$\rho_{\rm calc}{\rm g/cm^3}$	1.813	1.825	1.832	1.784	1.681
μ/mm ⁻¹	2.925	3.084	3.213	2.997	2.954
F(000)	1656.0	1660.0	1664.0	1796.0	862
Crystal size	0.4 imes 0.3 imes 0.02	0.2 imes 0.16 imes 0.06	0.3 × 0.2 ×	0.2 imes 0.1 imes 0.04	$0.22\times0.14\times0.03$
			0.02		
Radiation	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$
2Θ range /°	4.966 to 52.858	4.36 to 54.41	4.348 to 54.276	5.176 to 58.426	4.082 to 54.46
Reflections collected	43455	56456	65704	79540	87707
Independent reflections	6271	6702	6719	9018	7565
	[R _{int} =0.0499,	$[R_{int} = 0.0471,$	$[R_{int} = 0.0457,$	$[R_{int} = 0.0249,$	$[R_{int} = 0.0318,$
	R _{sigma} =0.0344]	$R_{sigma} = 0.0264$]	$R_{sigma} =$	$R_{sigma} = 0.0139]$	$R_{sigma} = 0.0149]$
			0.0255]		
Data/restraints/parameter	6271/304/465	6702/315/465	6719/257/465	9018/324/516	7565/37/442
Goodness-of-fit on F^2	1.101	1.130	1.065	1.054	1.133
Final R indexes	$R_1 = 0.0402,$	$R_1 = 0.0506,$	$R_1 = 0.0315,$	$R_1 = 0.0292,$	$R_1 = 0.0290,$
[I>=2σ (I)]	$wR_2 = 0.0871$	$wR_2 = 0.1127$	$wR_2 = 0.0745$	$wR_2 = 0.0752$	$wR_2 = 0.0658$
Final R indexes [all data]	$R_1 = 0.0578,$	$R_1 = 0.0643,$	$R_1 = 0.0477,$	$R_I = 0.0316,$	$R_1 = 0.0346,$
	$wR_2 = 0.0962$	$wR_2 = 0.1204$	$wR_2 = 0.0835$	$wR_2 = 0.0770$	$wR_2 = 0.0704$
Largest diff. peak/hole /	1.47/-1.28	1.18/-1.31	1.46/-1.21	2.20/-1.12	1.48/-0.83
e Å-3					

 Table S1. X-ray crystallographic data and refinement details for 1-5.

Bond	1	2	3
Ln–O1	2.566(3)	2.719(5)	2.724(3)
Ln–O2	2.333(3)	2.343(4)	2.337(3)
Ln–O3	2.364(3)	2.311(5)	2.305(3)
Ln–O4	2.716(3)	2.547(5)	2.553(3)
Ln–O5	2.510(5)	2.442(6)	2.429 (3)
Ln–O6	2.463(4)	2.523(6)	2.499(4)
Ln–O8	2.510(4)	2.536(5)	2.531(3)
Ln–O9	2.557(4)	2.491(6)	2.476(3)
Ln–O11	2.496(4)	2.450(6)	2.463(4)
Ln–O12	2.414(4)	2.407(6)	2.386(3)
Cu–O2	1.904(3)	1.919(5)	1.927(3)
Cu–O3	1.924(4)	1.893(5)	1.899(3)
Cu–O14	2.412(4)	2.387(6)	2.410(3)
Cu–N1	1.914(5)	1.917 (6)	1.920(4)
Cu–N2	1.928(5)	1.919(7)	1.913 (4)
Ln…Cu	3.412(4)	3.388(8)	3.386(5)

Table S2. Bond distances around metal coordination spheres in 1–3.

 Table S3. Bond distances around metal coordination spheres in 4 and 5.

Bond	4	5
Dy-O1	2.817(2)	2.542(3)
Dy–O2	2.3102(19)	2.312(3)
Dy-O3	2.311(2)	2.296(3)
Dy–O4	2.730(2)	2.625(4)
Dy–O5	2.441(2)	2.398(3)
Dy-O6	2.467(2)	2.357(3)
Dy–O8	2.464(2)	2.473(4)
Dy-O9	2.462(2)	2.464(3)
Dy-O11	2.424(3)	2.310(4)
Dy-O12	2.452(3)	-
Zn–O2	2.0033(19)	2.001(3)
Zn-O3	2.023(2)	2.032(3)
Zn-N1	2.045(3)	2.058(3)
Zn –N2	2.020(3)	2.016(3)
Zn –N3	2.049(3)	-
Zn-O10	-	1.995(3)
Dy…Zn	3.422(3)	3.341(3)

Label	Shape	Symmetry	1	2	3	4
DP-10	Decagon	D _{10h}	32.790	32.966	32.949	35.211
EPY-10	Enneagonalpyramid	C _{9V}	23.822	23.882	24.014	25.624
OBPY10	Octagonalbipyramid	D _{8h}	16.919	16.971	17.026	17.092
PPR-10	Pentagonal prism	D _{5h}	8.411	8.517	8.399	10.296
PAPR-10	Pentagonalantiprism	D _{5d}	13.343	13.480	13.339	8.355
JBCCU-10	Bicappedcube J15	D _{4h}	12.432	12.728	12.942	5.895
JBCSAPR-10	Bicapped square antiprism	D _{4d}	6.414	6.490	6.460	3.729
JMBIC-10	Metabidiminished icosahedron	C _{2V}	8.552	8.782	8.873	5.235
JATDI-10	Augmented tridiminished icosahedron	C _{3V}	16.822	17.049	17.115	19.025
JSPC-10	Sphenocorona J87	C _{2V}	2.858	2.707	2.765	4.380
SDD-10	Staggered Dodecahedron	D ₂	5.143	5.302	5.249	3.570
TD-10	Tetradecahedron	C _{2V}	4.483	4.620	4.588	3.530
HD-10	Hexadecahedron	D _{4h}	9.359	9.639	9.748	4.247

Table S4. Shape analysis around the Ln^{III} ions in 1-4

Table S5. Shape analysis around the Dy^{III} ion in 5.

Label	Shape	Symmetry	5
EP-9	Enneagon	D _{9h}	34.096
OP-9	Octagonal pyramid	C _{8V}	24.465
HBPY-9	Heptagonal bipyramid	D _{7h}	15.661
JTC-9	Johnson triangular cupola	C _{3V}	14.540
JCCU-9	Capped cube	C _{4V}	7.908
CCU-9	Spherical-relaxed capped cube	C _{4V}	6.582
JCSAPR-9	Capped square antiprism	C _{4V}	4.123
CSAPR-9	Spherical capped square antiprism	C _{4V}	3.251
JTCTPR-9	Tricapped trigonal prism	D _{3h}	3.980
TCTPR-9	Spherical tricapped trigonal prism	D _{3h}	3.021
JTDIC-9	Tridiminshed icosahedron	C _{3V}	10.997
HH-9	Hula-hoop	C _{2V}	7.209
MFF-9	Muffin	Cs	3.241

<i>T</i> (K)	$\chi_{\rm S}$ (emu/mol)	$\Delta \chi (\text{emu/mol})$	$\tau(s)$	α	$\Delta \chi (\text{emu/mol})$	$\tau(s)$	α
2	0.53053	1.21551	6.59E-04	0.58421	1.57112	0.86605	0.17072
2.15	0.26573	1.53738	4.14E-04	0.71321	1.45078	0.69405	0.11698
2.4	0	1.98438	2.08E-04	0.78045	1.27618	0.53912	0.0772
2.6	0	1.80199	7.23E-05	0.73944	1.20733	0.48193	0.14408
2.8	0	1.79317	4.64E-05	0.73123	1.07479	0.40753	0.14426
3	0	1.74837	2.86E-05	0.70523	0.98573	0.36835	0.16559
3.2	0	1.69142	1.75E-05	0.68218	0.91783	0.32398	0.17091
3.4	0	1.6208	1.18E-05	0.63681	0.87103	0.28751	0.19664
3.6	0	1.7814	7.79E-06	0.74022	0.58581	0.27258	0
3.8	0	1.82058	2.54E-06	0.78949	0.49549	0.26787	0
4	0	1.56137	6.88E-06	0.50326	0.65905	0.26309	0.21442
4.2	0	1.57114	9.59E-06	0.44089	0.55982	0.26433	0.22928
4.4	0	1.57848	9.02E-06	0.41594	0.44024	0.24229	0.19831
4.6	0	1.57208	1.05E-05	0.36642	0.3796	0.25324	0.22117
4.8	0	1.56403	1.03E-05	0.34811	0.31429	0.261	0.21633
5	0	1.53574	1.52E-05	0.21937	0.30272	0.309	0.3038
5.5	0	1.48901	8.40E-06	0.26939	0.17477	0.30019	0.24564
6	0	1.41792	9.00E-06	0.15672	0.1223	0.35936	0.29309
6.5	0	1.34817	8.55E-06	0.16915	0.07879	0.37395	0.25884

Table S6. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of1 by the double-component generalized Debye model at 5 kOe dc field.

Complex	Geometry of	M-Gd	SRM via	Additional	Applied	ref
	M^{n+}/Gd^{3+} 10ns	interaction	power law	relaxation	Field	
			mechanism	path	(Oe)	
			$(\tau^{-1} \propto T^n)$			
[Ni(o-van-en)GdCl ₃ (H ₂ O)]	SP-4/BTPR-8	-	n = 10.8(3)	QTM	1500	S1
$\{[Gd(H_2O)_3 \{Cu(pyzha)\} 5(MeOH)_3] \cdot 3($	5-coordinate/8-	F	-	-	1000	S2
$1 \text{ fO} \cdot 3(\text{H}_2\text{O})\}_n$	coordinate					
$[CuL^1(\mu\text{-NO}_3)Ln(NO_3)_2(H_2O)] \cdot CH_3CN$	SPY-5/ JSPC-10	F	n = 4	-	5000	S3
$[CuL^2(\mu-NO_3)Ln(NO_3)_2(H_2O)] \cdot CH_3CN$	SPY-5/ JSPC-10	F	n = 4	-	5000	S3
$[NaGd(VO)_2(cbdc)_4(H_2O)_{10}]_n$	Oh-6/TDD-8	F	n = 1	Orbach	5000	S4
${[RbGd(VO)_2(cbdc)4(H_2O)_{10}]2.5H_2O]_n}$	Oh-6/ BTPR-8	F	n = 2.32	Orbach	2500	S4
${[CsGd(VO)_2(cbdc)4(H_2O)_{11}]5H_2O}_2$	Oh-6/ SAPR-8	AF	n = 1	Orbach	2500	S4
[Cu(L ³)Gd(NO ₃) ₃] ₂	SYP-5/SDD-10	F	-	-	6000	S5
$[Gd_2Ni_3(dto)_6(H_2O)_{10}]$ ·12H ₂ O	SP-4/CSAPR-9	-	2.38	-	2500	S6
$[Gd_2Ni_3(dto)_6(H_2O)_{10}]$ ·2H ₂ O	or MFF-9		1.87	-	2500	S6
$[Fe^{III}_4Ln^{III}_4(teaH)_8(N_3)_8(H_2O)]$	Oh-6/ SAPR-8	F	-	-	-	S7
	and CSAPR-9					
$[Gd(ZnL^4)_2]CF_3SO_3 \cdot 0.5H_2O$	-	-	1.56	-	1000	S8
$[CuGd(H_2L^5)(NO_3)_3]$ ·2MeOH	SP-4/ TD-10	F	8.8	-	1000	S9
$[NiGd(H_2L^5)(NO_3)_3]$ ·4MeOH	SP-4/ TD-10	weak	9.0	-	5000	S9
[CuLn(L6)(NO3)3(H2O)]	SPY-5/JSPC-10	F	-	-	5000	S10
$[Cu_6M_4(pypt)_4(pypdH)_4(NO_3)_8]$	SPY-5/TDD-8	F	-	-	2000	S11

Table S7. Magneto-structural data on heterobimetallic M-Gd^{III} (M = 3d ion) systems displaying slow relaxation of magnetization (SRM) with non-Orbach relaxation mechanism.

 $[H_2(o-van-en) = N,N'-ethylene-bis(3-methoxysalicylaldiminate); (H2pyzha) = pyrazinohydroxamic acid; L^1 = N-salicylidene-N'-3-methoxysalicylidenepropane-1,2-diamine; L^2 = N-3-methoxysalicylidene-N'-salicylidenepropane-1,2-diamine; cbdc = cyclobutane-1,1-dicarboxylic acid salts; H_2L^3 = 2-(((4-(4-((2-(oxido)-3-methoxybenzylidene)amino)phenoxy)phenyl)-imino)methyl)-6-methoxyphenolato; dto = dithiooxalate; teaH_3 = triethanolamine; H_3L^4 = tris(((2-hydroxy-3-methoxybenzyl)-amino)ethyl)amine; H_4L^5 = (3,3'-((1E,1'E)-(ethane-1,2-diylbis-(azaneylylidene)) bis(methaneylylidene))bis(benzene-1,2-diol)); H_2L^6 = N,N'-bis(3-methoxy-5-methylsalicylidene)-1,2-phenylenediamine; pypdH_2 = 2-(2-pyridyl)-1,3-propane-diol; pyptH_3 = 2-hydroxymethyl-2-(2-pyridyl)-1,3-propane-diol.$

Complex	Geometry of Cu ^{II} /Ln ^{II} ions	Cu-Ln interaction	U _{eff} /K	Applied Field Oe)	ref
$[CuLn(hmp)_2(NO_3)_3(H_2O)_2]$	SP-4 /JSPC-10	F	No Max.	-	S12
[L ⁷ Cu(O ₂ COMe)Tb(thd) ₂]	SPY-5/MFF-9	F	13.8	1000	S13
[TbCu(L ⁸) ₂ (NO ₃) ₃	Oh-6/CSAPR-10	F	16.6(5)	1000	S14
[TbCu(L ⁹)(NO ₃) ₃ (H ₂ O)	SPY-5/JSPC-10	F	29(2),	1000	S15
[TbCu(L9)(NO3)(o-vanilate)(MeOH)]NO3	SPY-5/CSAPR-9	F	32.2(6)	1000	S15
[TbCu(sal)(NO ₃) ₂ (L ⁹)(MeOH)]	SPY-5/CSAPR-9	F	32.9(4)	1000	S16
[DyCu(sal)(NO ₃) ₂ (L ⁹)(MeOH)]	SPY-5/CSAPR-9	F	26.0(5)	1000	S16
[Cu(L ¹⁰)(C ₃ H ₆ O)Tb(NO ₃) ₃]	SPY-5/TD-10	F	42.3(4),	1000	S17
[Cu(L ¹⁰)(C ₃ H ₆ O)Dy(NO ₃) ₃]	SPY-5/TD-10	F	11.5(10),	1000	S17
[DyCuL ¹¹ (OAc) ₂ (NO ₃)]	SPY-5/CSAPR-9	F	No Max.	1750	S18
[Cu(3-MeOsaltn)(ac)Tb(hfac) ₂].	SPY-5/CSAPR-9	F	No Max.	1000	S19
[Cu(3-MeOsaltn)(ac)Dy(hfac) ₂].	SPY-5/CSAPR-9	F	No Max.	1000	S19
[CuDy(HL ¹²)(H ₂ O)(NO ₃) ₃]	SPY-5/JSPC-10	F	122(1)	2000	S20
[(CuL ¹³)Tb(NO ₃) ₃]	SP-4/TCTPR-9	F	28.5(5),	2000	S21
[(CuL ¹³)Dy(NO ₃) ₃]	SP-4/TCTPR-9	F	53(2),	2000	S21
$[CuL^{14}(\mu-NO_3)Tb(NO_3)_2(H_2O)] \cdot CH_3CN$	SPY-5/JSPC-10	F	19.3(8)	2000	S22
[CuL ¹⁴ (µ-NO ₃)Dy(NO ₃) ₂ (H ₂ O)]·CH ₃ CN	SPY-5/JSPC-10	F	26.1(10)	2000	S22
$[CuL^{15}(\mu\text{-NO}_3)Tb(NO_3)_2(H_2O)]\cdot CH_3CN$	SPY-5/JSPC-10	F	23.8(10),	2000	S22
$[CuL^{15}(\mu-NO_3)Dy(NO_3)_2(H_2O)] \cdot CH_3CN$	SPY-5/JSPC-10	F	28.2(5),	2000	S22
[Cu(Cl)(valen)Tb(NO ₃)(CH ₃ OH)(H ₂ O)(dca)]	SP-4/ JSPC-10	F	21.85	0	S23
[Ln(hfac) ₃ Cu(acac) ₂]	SPY-5/ TDD-8	AF	105(26)	2000	S24
[CuTb(L ⁶)(NO ₃) ₃ (H ₂ O)]	SPY-5/JSPC-10	F	5.3#	1000	S10
[CuDy(L ⁶)(NO ₃) ₃ (H ₂ O)]	SPY-5/JSPC-10	F	6.7#	3000	S10
$[CuTb(H_2L^{16})(NO_3)_3] \cdot 2MeOH$	SP-4/TD-10	F	non-Orbach	1500	S25

TableS8: List of important geometrical features and relevant magnetic parameters of heterobimetallic Cu^{II}Ln^{III} complexes displaying slow relaxation of Magnetization (SRM).

Estimated using modified Arrhenius law: $\ln(\chi''/\chi') = \ln(\omega \tau_0) + U_{eff}/kT$

Hmp = 2-(hydroxymethyl)-pyridine; $(L^7)^{2-} = N, N'-2, 2$ -dimethylpropylenedi(3-methoxysalicylideneiminato); L^8 2-methoxy-6-(((3-methoxypropyl)imino)methyl)phenol; L9 = = ((2,2-dimethylpropane-1,3diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-methoxyphenol); sal = salicylate; $H_2L^{10} = N,N'$ -bis(3methoxysalicylidene)-1,3-diamino-2,2-dimethylpropane; $H_{2}L^{11}$ N,N-bis(3-methoxysalicylidene)-1,2-= cyclohexanediamine; 3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = acetate; $H_{2}L^{12}$ hfac = hexafluoroacetylacetonato; = ((2-hydroxypropane-1,3diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-methoxyphenol); $H_2L^{13} = N-\alpha$ -methylsalicylidene-N0-3methoxysalicylidene-1,3-propanediamine; $H_2L^{14} = N$ -salicylidene-N'-3-ethoxysalicylidene-1,3-propanediamine; $H_2L^{15} = N$ -salicylidene-N'-3-methoxysalicylidene-1,3-propanediamine; H_2 valen = 1,2-ethanediylbis(2iminomethylene-6-methoxy-phenol); dca = dicyanamide; acac = acetylacetonato; $H_4L^{15} = (3,3'-((1E,1'E)-(ethane-$ 1,2-diylbis-(azaneylylidene)) bis(methaneylylidene))bis(benzene-1,2-diol)).

References:

- A. Vráblová, M. Tomás, L. R. Falvello, L. Dlháň, J. Titiš, J. Černák and R. Boča, *Dalton Trans.*, 2019, 48, 13943.
- S2 H.-G. Zhang, H. Yang, L. Sun, D.-C. Li and J.-M. Dou, Eur. J. Inorg. Chem., 2019, 23, 2839– 2843.
- S3 T. K. Ghosh, S. Maity, J. Mayans and A. Ghosh, *Inorg. Chem.*, 2021, 60, 438–448.
- S4 E. S. Bazhina, A. A. Korlyukov, J. K. Voronina, K. A. Babeshkin, E. A. Ugolkova, N. N. Efimov,
 M. V. Fedin, M. A. Kiskin and I. L. Eremenko, *Magnetochemistry*, 2021, 7, 82.
- S5 S. Caballero, E. Pilichos, M. Font-Bardia, J. Mayans and A. Escuer, *Cryst. Growth Des.*, 2023, 23, 3711–3719.
- S6 N. El A.-Dahmouni, R. Rabelo, J. Mayans, N. Moliner, S.-E. Stiriba, M. Julve, A. Switlicka, B. Machura, R. R.-Garcia, and Joan Cano, *Cryst. Growth Des.* 2023, 23, 5403–5408.
- S7 D. Schray, D. Westerbeck, J. Braun, Y. Lan, S. Gómez-Coca, W. Wernsdorfer, E. Ruiz, C. E. Anson, J. Schnack and A. K. Powell, *Inorg. Chem.*, 2023, 62, 6642–6648.
- S8 Y. Masuda, S. Sakata, S. Kayahara, N. Irie, M. Kofu, Y. Kono, T. Sakakibara, Y. Horii and T. Kajiwara, J. Phys. Chem. C, 2023, 127, 3295–3306.
- S9 E. C.-Villén, M F.-Bardia, J. Mayans and A. Escuer, *Cryst. Growth Des.* 2024, 24, 5806–5817.
- S10 N. C. Jana, Z. Jagličić, R. Herchel, P. Brandão, R. Nandy and A. Panja, *Cryst. Growth Des.*, 2024, 24, 7537–7548.
- S11 A. Anastassiades, D. I. Alexandropoulos, C. D. Buch, S. Piligkos, A. J. Tasiopoulos, *Dalton Trans.*, 2024, 53, 16202–16211.
- S12 F. He, M.-L. Tong and X.-M. Chen, *Inorg. Chem.*, 2005, 44, 8285–8292.
- S13 J.-P. Costes, F. Dahan and W. Wernsdorfer, *Inorg. Chem.*, 2006, 45, 5–7.
- S14 T. Kajiwara, M. Nakano, S. Takaishi and M. Yamashita, Inorg. Chem., 2008, 47, 8604–8606.
- S15 T. Kajiwara, K. Takahashi, T. Hiraizumi, S. Takaishi and M. Yamashita, *Polyhedron*, 2009, 28, 1860–1863.
- S16 T. Kajiwara, M. Nakano, K. Takahashi, S. Takaishi and M. Yamashita, *Chem. Eur. J.*, 2011, 17, 196–205.
- S17 T. Ishida, R. Watanabe, K. Fujiwara, A. Okazawa, N. Kojima, G. Tanaka, S. Yoshi and H. Nojiri, Dalton Trans., 2012, 41, 13609–13619.
- S18 P. Zhang, L. Zhang, S.-Y. Lin and J. Tang, *Inorg. Chem.*, 2013, 52, 6595–6602.
- S19 M. Towatari, K. Nishi, T. Fujinami, N. Matsumoto, Y. Sunatsuki, M. Kojima, N. Mochida, T. Ishida, N. Re and J. Mrozinski, *Inorg. Chem.*, 2013, 52, 6160–6178.
- S20 M. Dolai, M. Ali, J. Titiš and R. Boča, *Dalton Trans.*, 2015, 44, 13242–13249.
- S21 P. Mahapatra, N. Koizumi, T. Kanetomo, T. Ishida and A. Ghosh, New J. Chem., 2019, 43, 634– 643.
- S22 S. Maity, P. Bhunia, K. Ichihashi, T. Ishida and A. Ghosh, New J. Chem., 2020, 44, 6197–6205.
- S23 S.-L. Zhang, X.-F. Fan, R.-L. Du, B.-W. Shen, X.-D. Song, X.-Q. Wei and S.-S. Li, *Polyhedron*, 2021, 206, 115336.
- S24 L. Bellucci, L. Giordano, S. Carlotto, G. Poneti, M. Rancan, S. Samaritani, L. Armelao and L. Labella, *Inorg. Chim. Acta*, 2023, 556, 121665.
- S25 E. Costa-Villén, M. Font-Bardia, J. Mayans and A. Escuer, Cryst. Growth Des., 2024, 24, 5806– 5817.