Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Indium(III) complexes with Schiff base-derived polydentate ligands: chemotherapeutic,

radiochemotherapeutic, and radiosensitizer potentials against breast tumor cells

Andrea R. Aguirre^a, Gabrieli L. Parrilha^a, Gabriel Henrique C. Braga^a, Raquel G. Dos Santos^{*b}, Heloisa Beraldo^{*a}.

^a Departamento de Química, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, Brazil.

^b Centro de Desenvolvimento da Tecnologia Nuclear, 31.270-901, Belo Horizonte, Brazil.

Table of contents

Scheme S1. General scheme for the synthesis of indium(III) complexes (1-5)	2
Thermogravimetry	2
Infrared Spectra.	4
NMR spectra.	7
MALDI-TOF Mass spectra	17
Stability studies in PBS/DMSO solution	20
Table S1. Comparison of radiochemotherapy, ^{114m} In(III) radiation monotherapy,	22
combined In(III) chemotherapy + radiation monotherapy, in MCF-7 and MDA-MB-	
231 breast cancer cells.	

Scheme S1. General scheme for the synthesis of indium(III) complexes 1-5 and atom numbering for complexes 1-5

Thermogravimetry

Figure S1. Thermogravimetry of complex [In(L1)Cl(H₂O)] (1)

Figure S2. Thermogravimetry of complex $[In(L2)Cl(H_2O)]$ ·3H₂O (2)

Figure S3. Thermogravimetry of complex $[In(L3)Cl(H_2O)] \cdot H_2O$ (3)

Figure S4. Thermogravimetry of complex $[In(L4)Cl(H_2O)]$ (4)

Figure S5. Thermogravimetry of complex [In(L5)Cl(H₂O)] (5)

Infrared Spectra

Figure S6. Infrared spectra of H_2L1 and complex $[In(L1)Cl(H_2O)](1)$

Figure S7. Infrared spectra of H_2L2 and complex $[In(L2)Cl(H_2O)] \cdot 3H_2O(2)$

Figure S8. Infrared spectra of H_2L3 and complex $[In(L3)Cl(H_2O)] \cdot H_2O$ (3)

Figure S9. Infrared spectra of H_2L4 and complex $[In(L4)Cl(H_2O)]$ (4)

Figure S10. Infrared spectra of H_2L5 and complex $[In(L5)Cl(H_2O)]$ (5)

NMR Spectra

Figure S11. Structural representation of indium(III) complexes 1-5 with atom numbering

Figure S12. ¹H NMR spectra of H₂L1 and complex [In(L1)Cl(H₂O)] (1)

Figure S13. ${}^{13}C{}^{1}H$ and DEPT-135 NMR spectra of complex [In(L1)Cl(H₂O)] (1)

Figure S14. COSY NMR spectrum of complex [In(L1)Cl(H₂O)] (1)

Figure S15. HMQC NMR spectrum of complex [In(L1)Cl(H₂O)] (1)

Figure S16. ¹H NMR spectra of H_2L2 and complex [In(L2)Cl(H₂O)]·3H₂O (2)

Figure S17. ${}^{13}C{}^{1}H$ and DEPT-135 NMR spectra of complex [In(L2)Cl(H₂O)]·3H₂O (2)

Figure S18. COSY NMR spectrum of complex [In(L2)Cl(H₂O)]·3H₂O (2)

Figure S19. HMQC NMR spectrum of complex $[In(L2)Cl(H_2O)]$ ·3H₂O (2)

Figure S20. ¹H NMR spectra of H_2L3 and complex [In(L3)Cl(H_2O)]· H_2O (3)

Figure S21. ¹³C{¹H} and DEPT-135 NMR spectra of complex $[In(L3)Cl(H_2O)] \cdot H_2O$ (3)

Figure S22. COSY NMR spectrum of complex $[In(L3)Cl(H_2O)]$ ·H₂O (3)

Figure S23. HMQC NMR spectrum of complex $[In(L3)Cl(H_2O)] \cdot H_2O$ (3)

Figure S24. ¹H NMR spectra of H_2L4 and complex [In(L4)Cl(H₂O)] (4)

Figure S25. ${}^{13}C{}^{1}H$ and DEPT-135 NMR spectra of complex [In(L4)Cl(H₂O)] (4)

Figure S26. COSY NMR spectrum of complex $[In(L4)Cl(H_2O)]$ (4)

Figure S27. HMQC NMR spectrum of complex [In(L4)Cl(H₂O)] (4)

Figure S28. ¹H NMR spectra of H₂L5 and complex [In(L5)Cl(H₂O)] (5)

Figure S29. ${}^{13}C{}^{1}H$ and DEPT-135 NMR spectra of complex [In(L5)Cl(H₂O)] (5)

Figure S30. COSY NMR spectrum of complex [In(L5)Cl(H₂O)] (5)

Figure S31. HMQC NMR spectrum of complex [In(L5)Cl(H₂O)] (5)

MALDI-TOF Mass spectra

Figure S32. MALDI-TOF spectrum of complex $[In(L1)Cl(H_2O)](1)$

Figure S33. MALDI-TOF spectrum of complex [In(L2)Cl(H₂O)]·3H₂O (2)

Figure S34. MALDI-TOF spectrum of complex [In(L3)Cl(H₂O)]·H₂O (3)

Figure S35. MALDI-TOF spectrum of complex [In(L4)Cl(H₂O)] (4)

Figure S36. MALDI-TOF spectrum of complex [In(L5)Cl(H₂O)] (5)

Stability studies in PBS/DMSO solution

Figure S37. UV-vis absorption spectra as a function of time, of H₂L1 and complex 1 at $2x10^{-5}$ mol/L in 2% DMSO / PBS buffer, pH = 7.4.

Figure S38. UV-vis absorption spectra as a function of time, of H₂L3 and complex 3 at $2x10^{-5}$ mol/L in 2% DMSO / PBS buffer, pH = 7.4.

Figure S39. UV-vis absorption spectra as a function of time, of H_2L4 and complex 4 at $2x10^{-5}$ mol/L in 2% DMSO / PBS buffer, pH = 7.4.

Figure S40. UV-vis absorption spectra as a function of time, of H₂L5 and complex 5 at $2x10^{-5}$ mol/L in 2% DMSO / PBS buffer, pH = 7.4.

Table S1. Comparison of radiochemotherapy,	^{114m} In(III) radiation monotherapy,	, combined In(III) chemotherapy	+ radiation monotherapy, in MCF-7
and MDA-MB-231 breast cancer cells.			

	MCF-7										
	R	adionu	clide therapy	Combined therapy							
Concentration		Dose	Radiochemotherapy			Do	se				
(mol/L)	Compounds	/L) Compounds	nGy	^{114m} In	Compounds		% Cell	Death	1		
		поу	% Cell Death		0 Gy	1 Gy	3 Gy	6 Gy			
-	-	-	-	-	-	12.96 ± 2.87	25.84 ± 2.53	38.09 ± 3.60			
10-6	- *1	0.4	40.70 ± 3.74	1	24.51 ± 2.86	34.76 ± 2.86	42.13 ± 2.52	45.12 ± 1.45			
10-5		4	66.35 ± 3.33	1	52.08 ± 2.31	62.86 ± 1.83	69.78 ± 2.26	78.16 ± 1.65			
10 ⁻⁶ 10 ⁻⁵	*2	0.4	37.96 ± 3.33	3	13.62 ± 1.19	29.13 ± 1.73	40.88 ± 2.81	46.48 ± 3.49			
		4	53.54 ± 3.49	5	29.78 ± 1.80	44.81 ± 2.56	56.81 ± 1.65	63.91 ± 2.79			
10-6	*4	0.4	25.20 ± 3.00	$\begin{array}{c} 5.20 \pm 3.00 \\ 0.03 \pm 2.64 \end{array} \qquad $	12.75 ± 2.19	25.80 ± 1.98	40.89 ± 1.88	53.78 ± 2.02			
10-5	1 *4	4	40.03 ± 2.64		33.81 ± 2.50	51.70 ± 1.70	63.32 ± 1.48	66.20 ± 1.95			
10-6		0.4	54.39 ± 3.09	5	25.18 ± 3.70	43.76 ± 2.80	50.47 ± 2.47	53.42 ± 2.51			
10-5	*3	4	77.30 ± 3.28		54.05 ± 2.17	67.41 ± 2.13	79.63 ± 2.97	84.71 ± 3.94			
	MDA-MB-231										
	R	adionu	clide therapy		Combined therapy						
Concentration		Daga	Radiochemotherapy		Dose						
(mol/L)	(mol/L) Compounds	Dose	^{114m} In	Compounds	% Cell Death						
(IIIOI/L)		nGy	% Cell Death		0 Gy	1 Gy	3 Gy	6 Gy			
-	-	-	-	-	-	6.69 ± 1.57	12.68 ± 1.54	20.92 ± 2.21			
10-6	*1	0.4	30.79 ± 3.47	1	19.65 ± 3.76	22.57 ± 1.63	30.99 ± 2.87	44.61 ± 3.92			
10-5		4	48.44 ± 2.65	1	37.06 ± 2.07	39.95 ± 1.91	47.50 ± 2.78	55.98 ± 4.03			
10-6	- *3	0.4	26.33 ± 2.49	2	14.91 ± 3.16	18.20 ± 3.01	25.09 ± 2.44	35.92 ± 2.33			
10-5		4	42.99 ± 6.49] 3	28.35 ± 2.70	33.92 ± 3.62	39.90 ± 2.10	52.01 ± 2.93			
10-6	- *4	0.4	25.21 ± 3.00	4	12.75 ± 2.19	21.95 ± 2.84	24.48 ± 3.71	35.82 ± 2.99			
10-5		4	40.03 ± 2.64	4	33.81 ± 2.50	38.25 ± 1.78	44.89 ± 4.00	55.77 ± 3.09			
10-6	* =	0.4	37.78 ± 2.57	_	16.05 ± 2.85	18.11 ± 3.90	25.68 ± 1.65	36.54 ± 3.36			
	* 5	4	50 40 + 4 52	5	41 27 + 4 16	45 14 + 2 25	57.04 ± 1.72	63.25 ± 2.78			