Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Development of chiral modular bifunctional C₂-symmetric

bipyridine/phenanthroline-bipyrroloimidazolone ligands and

application in noncovalent interaction-assisted enantioselective

catalysis

Xi-Rui Wang,^{‡a} Pan Hu,^{‡a} Hui-Xian Jing,^{‡c} Zhang-Biao Yu,^{*a} Zhen Yao,^b Xiong-Wei Liu,^{*b} Wen-Jing

Zhang,*c Li-Jun Penga and Xiong-Li Liu*a

^a National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, Guizhou, China.

^b College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China.

^c Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

[‡] These three authors contributed equally to this work.

*E-mail address: TRYZB19672005@163.com (Z.-B. Yu), ashevy0819@163.com (X.-W. Liu), zhangwj@zzu.edu.cn (W.-J. Zhang) and liuxiongli8302@163.com (X.-L. Liu)

Table of Contents

Table of contents	S1
1. General experimental information	S2
2. General procedure for preparation of chiral Bpy/Phen-BPI ligands L1	S2
3. Characterization data of ligands L	S2
4. The gram scale synthesis of the Phen-BPI ligand L1s	S8
5. Catalytic asymmetric synthesis of compounds 6	S9
6. Characterization data of compounds 6	S9
7. Control experiments and HPLC spectra for compound 6aa	.S20
8. References	.S22
9. X-ray crystal data for compounds L1p, L1r and L1a-Ni(OTf) ₂ ·3H ₂ O complex	523
10. The copies of ¹ H NMR, ¹³ C NMR and HPLC spectra for compounds L and 6	S26

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus.

2. General procedure for preparation of chiral Bpy/Phen-BPI ligands L1

In a sealed tube equipped with a magnetic stirring bar, optically pure prolinamide **1** (2.4 mmol, 2.4 equiv) and bipyridine/phenanthroline-dicarbaldehyde **2** (1.0 mmol) were added. Then, ethanol (10.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the Bpy/Phen-BPI ligands **L1**.

3. Characterization data of ligands L

L1a: Yellow solid, yield 75%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.84-1.89 (m, 4H), 2.13 (s, 6H), 2.17-2.22 (m, 4H), 3.06-3.12 (m, 2H), 3.47-3.53 (m, 2H), 4.20-4.24 (m, 2H), 6.13 (s, 2H), 6.96 (d, J = 8.4 Hz, 4H), 7.45-7.49 (m, 6H), 7.62 (s, 2H), 8.09 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.7, 23.8, 27.0, 55.4, 63.9, 83.8, 118.5, 120.3, 125.4, 127.4, 128.4, 133.7, 133.8, 136.4, 144.6, 157.7, 173.8; HRMS (ESI-TOF) m/z: Calcd. for C₃₈H₃₆N₆NaO₂ [M+Na]⁺:

L1b: Yellow solid, yield 73%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.02-1.05 (m, 6H), 1.83-1.89 (m, 4H), 2.16-2.22 (m, 4H), 2.40-2.46 (m, 4H), 3.04-3.10 (m, 2H), 3.47-3.52 (m, 2H), 4.19-4.23 (m, 2H), 6.14 (s, 2H), 6.99 (d, J = 8.8 Hz, 4H), 7.47-7.50 (m, 6H), 7.60 (s, 2H), 8.08 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.4, 24.9, 28.1, 28.2, 56.5, 65.0, 85.0, 119.6, 121.5, 126.5, 128.4, 128.5, 135.0, 137.6, 141.3, 145.7, 158.9, 175.0; HRMS (ESI-TOF) m/z: Calcd. for C₄₀H₄₀N₆NaO₂ [M+Na]⁺: 659.3105; Found: 659.3099.

L1c: Yellow solid, yield 73%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.12-1.14 (m, 12H), 1.90-1.96 (m, 4H), 2.24-2.30 (m, 4H), 2.74-2.81 (m, 2H), 3.12-3.18 (m, 2H), 3.55-3.60 (m, 2H), 4.28-4.32 (m, 2H), 6.22 (s, 2H), 7.11 (d, J = 8.4 Hz, 4H), 7.55-7.60 (m, 6H), 7.65 (s, 2H), 8.14 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.9, 24.9, 28.1, 33.5, 56.5, 65.0, 85.0, 119.6, 121.4, 126.5, 127.0, 128.5, 135.1, 137.6, 145.7, 145.8, 158.9, 175.0; HRMS (ESI-TOF) m/z: Calcd. for C₄₂H₄₄N₆NaO₂ [M+Na]⁺: 687.3418; Found: 687.3423.

L1d: Yellow solid, yield 72%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.13 (s, 18H), 1.84-1.90 (m, 4H), 2.17-2.23 (m, 4H), 3.06-3.12 (m, 2H), 3.51-3.57 (m, 2H), 4.18-4.21 (m, 2H), 6.17 (s, 2H), 7.18-7.21 (m, 4H), 7.47-7.52 (m, 6H), 7.61 (s, 2H), 8.09 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.9, 27.1, 30.2, 33.3, 55.5, 63.9, 83.8, 118.5, 119.8, 124.9, 125.5, 127.5, 133.8, 136.6, 144.7, 147.0, 157.9, 174.0; HRMS (ESI-TOF) m/z: Calcd. for C₄₄H₄₈N₆NaO₂ [M+Na]⁺: 715.3731; Found: 715.3722.

L1e: Yellow solid, yield 67%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 0.83 (s, 3H), 0.85 (s, 3H), 1.16-1.19 (m, 12H), 1.48 (s, 3H), 1.49 (s, 3H), 1.89-1.94 (m, 4H), 2.18-2.26 (m, 4H), 2.28-2.36 (m, 2H), 3.08-3.14 (m, 4H), 3.39-3.44 (m, 2H), 4.49-4.53 (m, 2H), 5.58 (s, 2H), 6.74-6.76 (m, 2H), 7.16-7.19 (m, 4H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.63 (s, 2H), 8.03 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 22.4, 23.3, 24.9, 25.3, 25.6, 28.4, 28.9, 29.0, 57.3, 65.2, 88.0, 122.2, 123.8, 124.2, 126.5, 128.5, 129.3, 129.8, 136.5, 145.5, 146.4, 148.1, 158.6, 175.1; HRMS (ESI-TOF) m/z: Calcd. for C₄₈H₅₆N₆NaO₂ [M+Na]⁺: 771.4357; Found: 771.4348.

L1f: Yellow solid, yield 75%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.84-1.88 (m, 4H), 2.17-2.22 (m, 4H), 3.06-3.12 (m, 2H), 3.46-3.51 (m, 2H), 3.59 (s, 6H), 4.22-4.25 (m, 2H), 6.08 (s, 2H), 6.68 (d, J = 9.2 Hz, 4H), 7.42-7.49 (m, 6H), 7.64 (s, 2H), 8.11 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 22.9, 26.2, 53.3, 54.5, 63.0, 83.4, 112.2, 117.8, 121.6, 124.5, 126.5, 128.2, 135.6, 143.6, 155.1, 156.9, 172.7; HRMS (ESI-TOF) m/z: Calcd. for C₃₈H₃₆N₆NaO₄ [M+Na]⁺: 663.2690; Found: 663.2681.

L1g: Yellow solid, yield 75%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.85-1.91 (m, 4H), 2.17-2.24 (m, 4H), 3.03-3.09 (m, 2H), 3.45-3.50 (m, 2H), 4.25-4.29 (m, 2H), 6.07 (s, 2H), 6.82-6.86 (m, 4H), 7.48-7.54 (m, 6H), 7.65 (s, 2H), 8.13 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.9, 27.1, 55.5, 63.9, 84.2, 114.7 (d, $J_{CF} = 22.3$ Hz), 118.8, 122.6 (d, $J_{CF} = 7.3$ Hz), 125.6, 127.6, 132.3 (d, $J_{CF} = 3.2$ Hz), 136.6, 144.6, 157.5, 159.8 (d, $J_{CF} = 244.2$ Hz), 174.0; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀F₂N₆NaO₂ [M+Na]⁺: 639.2291; Found: 639.2287.

L1h: Yellow solid, yield 70%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.82-1.89 (m, 4H), 2.17-2.22 (m, 4H), 3.02-3.08 (m, 2H), 3.49-3.54 (m, 2H), 4.19-4.22 (m, 2H), 6.14 (s, 2H), 6.65-6.70 (m, 2H), 7.05-7.11 (m, 2H), 7.19-7.21 (m, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.64 (s, 2H), 7.69-7.73 (m, 2H), 8.13 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 22.9, 26.0, 54.5, 62.9, 82.6, 106.7 (d, $J_{CF} = 26.3$ Hz), 109.8 (d, $J_{CF} = 22.2$ Hz), 114.2 (d, $J_{CF} = 3.4$ Hz), 117.6, 124.6, 126.6, 128.1 (d, $J_{CF} = 10.2$ Hz), 135.7, 137.1, 137.2, 143.7, 156.3, 161.8 (d, $J_{CF} = 244.1$ Hz), 173.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀F₂N₆NaO₂ [M+Na]⁺: 639.2291; Found: 639.2297.

L1i: Yellow solid, yield 70%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.83-1.96 (m, 4H), 2.16-2.30 (m, 4H), 3.14-3.20 (m, 2H), 3.41-3.46 (m, 2H), 4.39-4.42 (m, 2H), 5.96 (s, 2H), 6.82-6.86 (m, 2H), 6.96-7.07 (m, 4H), 7.30-7.34 (m, 2H), 7.56-7.61 (m, 4H), 8.09 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 25.0, 28.1, 56.5, 64.3, 85.6, 116.4 (d, $J_{CF} = 20.3$ Hz), 120.5, 124.0 (d, $J_{CF} = 11.2$ Hz), 124.5, 126.5, 128.5, 128.8 (d, $J_{CF} = 8.2$ Hz), 129.8, 137.2, 145.7, 158.5, 158.7 (d, $J_{CF} = 249.0$ Hz), 175.5; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀F₂N₆NaO₂ [M+Na]⁺: 639.2291; Found: 639.2285.

L1j: Yellow solid, yield 71%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.83-1.91 (m, 4H), 2.18-2.23 (m, 4H), 3.02-3.08 (m, 2H), 3.47-3.52 (m, 2H), 4.22-4.25 (m, 2H), 6.11 (s, 2H), 7.10-7.14 (m, 4H), 7.48 (d, J = 8.4 Hz, 2H), 7.54-7.58 (m, 4H), 7.66 (s, 2H), 8.13 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.0, 26.3, 54.7, 63.1, 82.9, 117.8, 120.5, 124.8, 126.7, 127.2, 128.4, 134.2, 135.9, 143.8, 156.5, 173.3; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀Cl₂N₆NaO₂ [M+Na]⁺: 671.1700; Found: 671.1708.

L1k: Yellow solid, yield 74%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.84-1.90 (m, 4H), 2.18-2.23 (m, 4H), 3.02-3.08 (m, 2H), 3.49-3.54 (m, 2H), 4.21-4.25 (m, 2H), 6.12 (s, 2H), 6.93-6.96 (m, 2H), 7.03-7.07 (m, 2H), 7.30-7.33 (m, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.65 (s, 2H), 7.90-7.91 (m, 2H), 8.12 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.9, 27.0, 55.5, 63.9, 83.6, 117.9, 118.6, 120.3, 124.1, 125.6, 127.5, 128.9, 133.6, 136.6, 137.7, 144.7, 157.2, 174.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀Cl₂N₆NaO₂ [M+Na]⁺: 671.1700; Found: 671.1709.

L1I: Yellow solid, yield 73%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.86-1.92 (m, 4H), 2.18-2.24 (m, 4H), 3.03-3.09 (m, 2H), 3.48-3.53 (m, 2H), 4.22-4.26 (m, 2H), 6.11 (s, 2H), 7.25-7.29 (m, 4H), 7.48-7.54 (m, 6H), 7.66 (s, 2H), 8.14 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 24.9, 28.2, 56.6, 65.0, 84.7, 118.1, 119.7, 122.7, 126.7, 128.6, 132.0, 136.6, 137.7, 145.7, 158.3, 175.2; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀Br₂N₆NaO₂ [M+Na]⁺: 759.0689; Found: 759.0694.

L1m: Yellow solid, yield 70%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.85-1.91 (m, 4H), 2.18-2.23 (m, 4H), 3.02-3.08 (m, 2H), 3.48-3.53 (m, 2H), 4.23-4.26 (m, 2H), 6.11 (s, 2H), 6.97-7.01 (m, 2H), 7.09-7.12 (m, 2H), 7.34-7.37 (m, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.65 (s, 2H), 8.05-8.06 (m, 2H), 8.13 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.2, 26.4, 54.8, 63.2, 82.9, 117.7, 118.0, 121.0, 122.4, 124.9, 126.3, 126.9, 128.5, 136.0, 137.2, 144.1, 156.5, 173.7; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀Br₂N₆NaO₂ [M+Na]⁺: 759.0689; Found: 759.0695.

L1n: Light yellow solid, yield 71%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.05-1.09 (m, 6H), 1.81-1.87 (m, 4H), 2.13-2.19 (m, 4H), 2.44-2.49 (m, 4H), 2.87-2.93 (m, 2H), 3.39-3.44 (m, 2H), 4.18-4.21 (m, 2H), 5.66 (s, 2H), 7.00 (d, J = 8.8 Hz, 4H), 7.19-7.27 (m, 6H), 7.67-7.71 (m, 2H), 8.20-8.22 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.5, 24.9, 27.7, 28.3, 56.4, 64.8, 84.6, 120.9, 121.0, 121.8, 128.4, 128.9, 135.1, 138.3, 141.4, 155.7, 157.2, 175.3; HRMS (ESI-TOF) m/z: Calcd. for C₃₈H₄₀N₆NaO₂ [M+Na]⁺: 635.3105; Found: 635.3112.

L1o: Light yellow solid, yield 70%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.07 (s, 6H), 1.08 (s, 6H), 1.80-1.86 (m, 4H), 2.12-2.18 (m, 4H), 2.69-2.76 (m, 2H), 2.86-2.92 (m, 2H), 3.38-3.43 (m, 2H), 4.17-4.21 (m, 2H), 5.66 (s, 2H), 7.02 (d, J = 8.4 Hz, 4H), 7.20-7.28 (m, 6H), 7.67-7.71 (m, 2H), 8.20 (d, J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.9, 24.9, 27.7, 33.6, 56.4, 64.8, 84.6, 120.9, 121.0, 121.8, 127.0, 135.2, 138.3, 146.0, 155.7, 157.3, 175.3; HRMS (ESI-TOF) m/z: Calcd. for C₄₀H₄₄N₆NaO₂ [M+Na]⁺: 663.3418; Found: 663.3405.

L1p: Light yellow solid, yield 67%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.81-1.86 (m, 4H), 2.13-2.19 (m, 4H), 2.84-2.90 (m, 2H), 3.39-3.44 (m, 2H), 4.14-4.17 (m, 2H), 5.71 (s, 2H), 6.95-6.98 (m, 2H), 7.05-7.09 (m, 2H), 7.19-7.27 (m, 4H), 7.61-7.62 (m, 2H), 7.71-7.75 (m, 2H), 8.16 (d, J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.9, 26.7, 55.3, 63.8, 83.0, 117.9, 119.9, 120.1, 120.3, 124.0, 128.9, 133.6, 137.5, 137.9, 154.5, 155.6, 174.6; HRMS (ESI-TOF) m/z: Calcd. for $C_{34}H_{30}Cl_2N_6NaO_2$ [M+Na]⁺: 647.1700; Found: 647.1691.

L1q: Light yellow solid, yield 68%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.81-1.85 (m, 4H), 2.12-2.18 (m, 4H), 2.85-2.91 (m, 2H), 3.39-3.44 (m, 2H), 4.13-4.16 (m, 2H), 5.68 (s, 2H), 7.19-

7.32 (m, 10H), 7.69-7.73 (m, 2H), 8.12 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.0, 25.8, 54.4, 62.9, 82.2, 116.2, 119.0, 119.2, 120.9, 130.1, 134.9, 136.6, 153.6, 154.8, 173.6; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₀Br₂N₆NaO₂ [M+Na]⁺: 735.0689; Found: 735.0685.

L1r: Light yellow solid, yield 63%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.75-1.81 (m, 2H), 1.87-1.92 (m, 2H), 2.01-2.08 (m, 2H), 2.14-2.20 (m, 2H), 3.02-3.08 (m, 2H), 3.34-3.39 (m, 2H), 4.27-4.30 (m, 2H), 5.79 (s, 2H), 6.91-6.95 (m, 2H), 7.03-7.08 (m, 4H), 7.13-7.18 (m, 2H), 7.34-7.36 (m, 2H), 7.73-7.77 (m, 2H), 8.07-8.09 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 24.4, 27.4, 55.9, 64.3, 84.7, 116.0 (d, $J_{CF} = 20.3$ Hz), 120.4, 122.0, 123.7 (d, $J_{CF} = 12.0$ Hz), 124.3, 128.9, 129.2 (d, $J_{CF} = 8.1$ Hz), 138.2, 155.3, 156.9, 157.8 (d, $J_{CF} = 257.0$ Hz), 176.1; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₀F₂N₆NaO₂ [M+Na]⁺: 615.2292; Found: 615.2299.

L5a: Light yellow solid, yield 65%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ: 1.72-1.85 (m, 2H), 2.07-2.14 (m, 2H), 3.10-3.16 (m, 1H), 3.27-3.33 (m, 1H), 4.19-4.23 (m, 1H), 6.24 (s, 1H), 6.88-6.92 (m, 1H), 7.09-7.13 (m, 2H), 7.50-7.59 (m, 6H), 8.11-8.16 (m, 2H), 8.94-8.95 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ: 24.3, 28.2, 56.2, 65.0, 85.4, 119.8, 122.2, 123.3, 125.6, 126.0, 126.7, 128.3, 128.6, 129.1, 136.6, 136.7, 137.8, 144.5, 145.0, 149.6, 158.8, 174.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₀N₄NaO [M+Na]⁺: 403.1529; Found: 403.1534.

4. The gram scale synthesis of the Phen-BPI ligand L1s

In a sealed tube equipped with a magnetic stirring bar, phenanthroline-dicarbaldehyde 2 (0.71 g, 3.0 mmol) and optically pure prolinamide 1a (1.37 g, 7.2 mmol) were added. Then, anhydrous ethanol (30.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After

completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the Phen-BPI ligand L1s (1.13 g, yield 65%, >20:1 dr).

5. Catalytic asymmetric synthesis of compounds 6

In a sealed tube equipped with a magnetic stirring bar, to the mixture of Ni(OTf)₂ (4.0 mol %), L1s (5.0 mol %) in 1.5 mL of DCM was added 4 (0.30 mmol), and 5 (0.20 mmol). The reaction mixture was stirred at room temperature for 2 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 6, using hexane/EtOAc (8/1, v/v) as the eluent.

6. Characterization data of compounds 6

6aa: Product in accordance with literature characterization data⁸. 91%, 95% ee, $[\alpha]_D^{20} = -16.4$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 15.65$ min; $\tau_{minor} = 19.01$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.85-3.91 (m, 1H), 3.97-4.03 (m, 1H), 4.83-4.87 (m, 1H), 6.87-6.91 (m, 1H), 6.95-7.06 (m, 5H), 7.10-7.14 (m, 3H), 7.17-7.23 (m, 3H), 7.34 (d, *J* = 8.0 Hz, 1H), 8.04 (d, *J* = 6.8 Hz, 1H), 8.20 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 37.5, 48.0, 110.1, 117.6, 118.3, 118.4, 120.6, 121.0, 124.7, 125.3, 125.4, 125.6, 126.5, 126.9, 127.3, 135.5, 139.0, 142.8, 146.0, 196.1.

6ab: Product in accordance with literature characterization data⁸. 92%, 93% ee, $[\alpha]_D^{20} = -8.2$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 12.66$ min; $\tau_{minor} = 14.84$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.79-3.85 (m, 1H), 3.99-4.05 (m, 1H), 4.81-4.85 (m, 1H), 6.87-6.91 (m, 1H), 7.02-7.06 (m, 3H), 7.22-7.24 (m, 1H), 7.30-7.38 (m, 6H), 7.49-7.53 (m, 1H), 8.32 (d, J = 6.4 Hz, 1H), 10.91 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 37.4, 48.6, 111.9, 115.3 (d, *J*_{CF} = 21.2 Hz), 117.7, 118.9 (d, *J*_{CF} = 23.3 Hz), 121.6, 122.6, 126.3, 126.5 (d, *J*_{CF} = 8.2 Hz), 126.7, 128.9, 129.8 (d, *J*_{CF} = 8.1 Hz), 136.9, 140.6, 141.2, 141.3, 146.8, 161.2 (d, *J*_{CF} = 240.3 Hz), 197.6.

6ac: Product in accordance with literature characterization data⁸. 93%, 99% ee, $[\alpha]_D^{20} = -18.2$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IA column (70/30 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 14.69$ min; $\tau_{minor} = 13.44$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.79-3.85 (m, 1H), 3.98-4.04 (m, 1H), 4.80-4.83 (m, 1H), 6.87-6.90 (m, 1H), 7.01-7.05 (m, 1H), 7.26-7.36 (m, 9H), 7.46-7.52 (m, 1H), 8.32 (d, *J* = 6.0 Hz, 1H), 10.91 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 37.5, 48.3, 111.9, 117.3, 118.9, 119.0, 121.6, 122.7, 126.3, 126.4, 126.6, 128.6, 128.9, 130.0, 131.0, 136.9, 140.6, 144.1, 146.7, 197.5.

6ad: Product in accordance with literature characterization data⁸. 91%, 90% ee, $[\alpha]_D^{20} = -1.3$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.24$ min; $\tau_{minor} = 15.82$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.84-3.91 (m, 1H), 3.97-4.06 (m, 1H), 4.84-4.88 (m, 1H), 6.90-6.94 (m, 1H), 7.02-7.09 (m, 5H), 7.14-7.23 (m, 5H), 7.32 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 6.4 Hz, 1H), 8.10 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 37.0, 47.9, 110.1, 117.0, 118.2, 118.5, 120.6, 121.2, 124.8, 125.2, 125.5, 125.6, 125.7, 126.7, 127.0, 128.6, 133.1, 135.5, 139.2, 145.1, 145.8, 195.4.

6ae: Product in accordance with literature characterization data⁸. 90%, 94% ee, $[\alpha]_D^{20} = -17.1$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 12.64$ min; $\tau_{minor} = 15.32$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.78-3.85 (m, 1H), 3.97-4.04 (m, 1H), 4.77-4.81 (m, 1H), 6.86-6.90 (m, 1H), 7.01-7.05 (m, 1H), 7.28-7.42 (m, 9H), 7.50-7.57 (m, 1H), 8.32 (d, *J* = 6.4 Hz, 1H), 10.90 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 37.5, 48.2, 111.9, 117.3, 118.9, 119.0, 119.4, 121.6, 122.7, 126.3, 126.4, 126.6, 128.9, 130.4, 131.5, 136.9, 140.6, 144.6, 146.7, 197.4.

6af: Product in accordance with literature characterization data⁸. 88%, 93% ee, $[\alpha]_D^{20} = -20.3$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 22.05$ min; $\tau_{minor} = 29.97$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.91-3.98 (m, 1H), 4.05-4.11 (m, 1H), 4.97-5.00 (m, 1H), 6.88-6.91 (m, 1H), 7.02-7.06 (m, 1H), 7.32-7.40 (m, 5H), 7.52-7.55 (m, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 8.09 (d, *J* = 8.4 Hz, 2H), 8.32 (d, *J* = 6.4 Hz, 1H), 10.99 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 37.8, 47.9, 112.0, 116.6, 118.9, 119.0, 121.7, 123.0, 123.9, 126.4, 126.5, 126.6, 129.0, 129.4, 136.9, 140.6, 146.3, 146.6, 153.3, 197.0.

6ag: Product in accordance with literature characterization data⁸. 89%, 93% ee, $[\alpha]_D^{20} = +3.0$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 18.06$ min; $\tau_{minor} = 26.36$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.90-3.97 (m, 1H), 3.99-4.05 (m, 1H), 4.97-5.01 (m, 1H), 6.85-

6.89 (m, 1H), 7.00-7.03 (m, 1H), 7.28-7.34 (m, 3H), 7.37-7.39 (m, 2H), 7.48-7.52 (m, 2H), 7.84 (d, J = 7.6 Hz, 1H), 7.97-7.99 (m, 1H), 8.16 (s, 1H), 8.29 (d, J = 6.4 Hz, 1H), 10.96 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 37.6, 48.0, 112.0, 116.8, 118.9, 119.0, 121.6, 121.7, 122.7, 123.0, 126.3, 126.4, 126.5, 129.0, 130.1, 135.1, 136.9, 140.6, 146.6, 147.5, 148.2, 197.2.

6ah: Product in accordance with literature characterization data⁸. 87%, 90% ee, $[\alpha]_D^{20} = -12.2$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IA column (70/30 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 16.42$ min; $\tau_{minor} = 14.71$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.66 (s, 3H), 3.74-3.80 (m, 1H), 3.97-4.03 (m, 1H), 4.73-4.77 (m, 1H), 6.77 (d, *J* = 8.4 Hz, 2H), 6.86-6.90 (m, 1H), 7.01-7.04 (m, 1H), 7.16-7.37 (m, 7H), 7.46-7.50 (m, 1H), 8.31 (d, *J* = 6.4 Hz, 1H), 10.86 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 37.5, 48.8, 55.4, 111.8, 114.0, 118.1, 118.7, 119.2, 121.5, 122.4, 126.2, 126.3, 126.8, 128.8, 129.0, 136.9, 137.0, 140.5, 146.9, 157.9, 197.9.

6ai: Product in accordance with literature characterization data⁸. 85%, 90% ee, $[\alpha]_D^{20} = -20.3$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IE column (70/30 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 14.64$ min; $\tau_{minor} = 15.77$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.54-3.60 (m, 1H), 3.71 (s, 3H), 3.99-4.07 (m, 1H), 5.19-5.23 (m, 1H), 6.73-6.77 (m, 1H), 6.84-6.89 (m, 2H), 6.97-7.01 (m, 1H), 7.07-7.11 (m, 3H), 7.18 (s, 1H), 7.26-7.29 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.46-7.50 (m, 1H), 8.29 (d, *J* = 6.4 Hz, 1H), 10.79 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 30.4, 47.8, 55.9, 111.2, 111.8, 117.5, 118.7, 119.1, 120.7, 121.5, 122.9, 126.2, 126.3, 127.0, 127.7, 128.7, 128.8, 132.5, 136.8, 140.5, 146.9, 156.6, 198.0.

6aj: Product in accordance with literature characterization data⁸. 90%, 93% ee, $[\alpha]_D^{20} = -4.1$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 12.39$ min; $\tau_{minor} = 10.97$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.21 (s, 3H), 3.73-3.80 (m, 1H), 3.97-4.03 (m, 1H), 4.72-4.76 (m, 1H), 6.85-6.89 (m, 1H), 7.00-7.03 (m, 3H), 7.16-7.20 (m, 3H), 7.25-7.36 (m, 4H), 7.49-7.53 (m, 1H), 8.31 (d, *J* = 6.4 Hz, 1H), 10.85 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 21.0, 37.8, 48.6, 111.8, 117.9, 118.7, 119.1, 121.5, 122.5, 126.2, 126.3, 126.7, 127.9, 128.8, 129.2, 135.4, 136.9, 140.5, 142.0, 146.8, 197.8.

6ak: 87%, 90% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 12.05$ min; $\tau_{minor} = 15.18$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 2.37 (s, 3H), 3.70-3.76 (m, 1H), 3.96-4.02 (m, 1H), 5.01-5.04 (m, 1H), 6.88-6.91 (m, 1H), 7.02-7.05 (m, 3H), 7.11-7.16 (m, 3H), 7.21-7.23 (m, 1H), 7.26-7.34 (m, 3H), 7.47-7.51 (m, 1H), 8.33 (d, *J* = 6.4 Hz, 1H), 10.87 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 19.6, 33.8, 48.3, 111.9, 117.3, 118.8, 118.9, 121.5, 123.3, 126.3, 126.4, 126.5, 126.8, 127.4, 128.9, 130.7, 135.5, 136.9, 140.5, 142.7, 146.8, 197.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₀N₂NaO₂ [M+Na]⁺: 379.1417; Found: 379.1414.

6al: 89%, 93% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (70/30 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.86$ min; $\tau_{minor} = 10.33$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.09-1.13 (m, 3H), 2.47-2.53 (m, 2H), 3.75-3.81 (m, 1H), 3.954.02 (m, 1H), 4.73-4.77 (m, 1H), 6.85-6.89 (m, 1H), 7.00-7.05 (m, 3H), 7.14-7.16 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.26-7.31 (m, 3H), 7.35 (d, J = 8.0 Hz, 1H), 7.47-7.51 (m, 1H), 8.30 (d, J = 6.4 Hz, 1H), 10.85 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 16.0, 28.2, 37.9, 48.6, 111.8, 117.9, 118.7, 119.1, 121.5, 122.4, 126.2, 126.3, 126.8, 128.0, 128.1, 128.8, 136.9, 140.5, 141.8, 142.3, 146.9, 197.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₂N₂NaO₂ [M+Na]⁺: 393.1573; Found: 393.1573.

6am: Product in accordance with literature characterization data⁸. 90%, 93% ee, $[\alpha]_D^{20} = -19.6$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 18.48$ min; $\tau_{minor} = 23.41$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.89-3.95 (m, 1H), 4.03-4.09 (m, 1H), 5.11-5.14 (m, 1H), 6.87-7.07 (m, 4H), 7.22-7.35 (m, 5H), 7.43-7.51 (m, 2H), 8.31 (d, *J* = 6.4 Hz, 1H), 10.92 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 33.5, 49.5, 112.0, 117.6, 118.9, 119.1, 121.6, 122.7, 124.3, 124.4, 126.3, 126.5, 127.0, 129.0, 136.9, 140.6, 146.6, 149.5, 197.1.

6ba: 87%, 94% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.98$ min; $\tau_{minor} = 9.26$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.83-3.89 (m, 1H), 4.03-4.10 (m, 1H), 4.84-4.88 (m, 1H), 6.90-6.98 (m, 2H), 7.12-7.45 (m, 8H), 7.52-7.56 (m, 1H), 8.33 (d, *J* = 6.4 Hz, 1H), 11.31 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 37.6, 48.1, 113.4 (d, *J*_{CF} = 21.3 Hz), 114.8 (d, *J*_{CF} = 21.4 Hz), 116.3, 118.2, 118.7, 120.0, 121.1, 124.2 (d, *J*_{CF} = 9.1 Hz), 126.3 (d, *J*_{CF} = 4.4 Hz), 128.7, 129.0, 130.5 (d, *J*_{CF} = 8.3 Hz), 133.6, 140.6, 146.7 (d, *J*_{CF} = 7.0 Hz), 147.9, 162.6 (d, *J*_{CF} = 242.3 Hz), 197.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₆CIFN₂NaO₂ [M+Na]⁺: 417.0777; Found: 417.0782.

6ca: Product in accordance with literature characterization data⁸. 92%, 90% ee, $[\alpha]_D^{20} = -24.4$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 9.48$ min; $\tau_{minor} = 8.43$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.68 (s, 3H), 3.78-3.84 (m, 1H), 4.02-4.08 (m, 1H), 4.75-4.79 (m, 1H), 6.69-6.72 (m, 1H), 6.86 (d, J = 2.0 Hz, 1H), 7.12-7.18 (m, 2H), 7.22-7.31 (m, 5H), 7.35 (d, J = 7.6 Hz, 2H), 7.47-7.51 (m, 1H), 8.32 (d, J = 6.8 Hz, 1H), 10.73 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 38.3, 48.5, 55.8, 101.2, 111.4, 112.5, 117.5, 123.3, 126.2, 126.3, 126.5, 127.1, 128.1, 128.6, 128.8, 132.0, 140.5, 145.0, 146.9, 153.3, 197.9.

6cb: 93%, 92% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.31$ min; $\tau_{minor} = 9.50$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.68 (s, 3H), 3.77-3.83 (m, 1H), 3.98-4.04 (m, 1H), 4.74-4.78 (m, 1H), 6.68-6.71 (m, 1H), 6.83 (s, 1H), 7.19-7.38 (m, 8H), 7.51-7.55 (m, 1H), 8.32 (d, *J* = 6.4 Hz, 1H), 10.74 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 37.5, 48.2, 55.8, 101.1, 111.4, 112.5, 117.1, 123.3, 126.3, 126.4, 127.0, 128.5, 128.9, 130.0, 130.9, 132.0, 140.6, 144.0, 146.7, 153.4, 197.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₉ClN₂NaO₃ [M+Na]⁺: 429.0976; Found: 429.0971.

6da: 91%, 91% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 16.47$ min; $\tau_{minor} = 18.91$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.31 (s, 3H), 3.83-3.89 (m, 1H), 3.94-4.00 (m, 1H), 4.80-4.84 (m, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.91 (s, 1H), 6.99-7.07 (m, 5H), 7.12-7.20 (m, 5H), 8.05 (s, 1H), 8.07 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 21.8, 38.3, 48.6, 111.6, 117.6, 118.8, 120.5, 121.8, 124.7, 126.2, 126.3, 126.4, 128.1, 128.6, 128.8, 130.5, 137.3, 140.5, 145.1, 146.8, 197.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₀N₂NaO₂ [M+Na]⁺: 379.1417; Found: 379.1418.

6db: 90%, 92% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 13.23$ min; $\tau_{minor} = 15.26$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 2.33 (s, 3H), 3.77-3.83 (m, 1H), 3.95-4.01 (m, 1H), 4.76-4.80 (m, 1H), 6.71 (d, *J* = 8.0 Hz, 1H), 7.01-7.05 (m, 2H), 7.10 (s, 1H), 7.18-7.23 (m, 3H), 7.30-7.35 (m, 3H), 7.49-7.53 (m, 1H), 8.31 (d, *J* = 6.4 Hz, 1H), 10.72 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 21.8, 37.5, 48.6, 111.7, 115.3 (d, *J*_{CF} = 21.3 Hz), 117.5, 118.8, 120.6, 121.8, 124.6, 126.3, 126.4, 128.9, 129.8 (d, *J*_{CF} = 8.1 Hz), 130.6, 137.4, 140.6, 141.2 (d, *J*_{CF} = 3.4 Hz), 146.8, 161.8 (d, *J*_{CF} = 240.3 Hz), 197.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₉FN₂NaO₂ [M+Na]⁺: 397.1323; Found: 397.1325.

6dc: 92%, 90% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.24$ min; $\tau_{minor} = 15.17$ min). ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.33 (s, 3H), 3.80-3.86 (m, 1H), 3.95-4.01 (m, 1H), 4.77-4.81 (m, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.91-6.96 (m, 1H), 7.10-7.27 (m, 7H), 7.32-7.35 (m, 1H), 7.51-7.55 (m, 1H), 8.32 (d, J = 6.4 Hz, 1H), 10.73 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 21.8, 37.8, 48.2, 111.7, 113.2 (d, $J_{CF} = 21.2$ Hz), 114.7 (d, $J_{CF} = 21.1$ Hz), 117.0, 118.7, 120.6, 122.0, 124.2, 124.6, 126.3, 126.4, 128.9, 130.4 (d, $J_{CF} = 8.4$ Hz), 130.6, 137.3, 140.6, 146.8, 148.2 (d, $J_{CF} = 7.3$ Hz), 162.8 (d, $J_{CF} = 242.0$ Hz), 197.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₉FN₂NaO₂ [M+Na]⁺: 397.1323; Found: 397.1327.

6dd: 92%, 91% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 10.96$ min; $\tau_{minor} = 14.59$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 2.34 (s, 3H), 3.80-3.86 (m, 1H), 3.95-4.01 (m, 1H), 4.76-4.80 (m, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 7.10 (s, 1H), 7.17-7.19 (m, 1H), 7.23-7.27 (m, 4H), 7.31-7.36 (m, 3H), 7.51-7.55 (m, 1H), 8.32 (d, *J* = 6.4 Hz, 1H), 10.74 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 21.8, 37.8, 48.2, 111.7, 116.9, 118.7, 120.7, 122.0, 124.6, 126.3, 126.4, 126.5, 126.9, 127.9, 128.9, 130.5, 130.7, 133.3, 137.3, 140.6, 146.7, 147.8, 197.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₉ClN₂NaO₂ [M+Na]⁺: 413.1027; Found: 413.1026.

6de: 85%, 91% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 13.04$ min; $\tau_{minor} = 15.64$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 2.33 (s, 3H), 3.78-3.84 (m, 1H), 3.95-4.01 (m, 1H), 4.74-4.78 (m, 1H), 6.71 (d, *J* = 8.0 Hz, 1H), 7.10 (s, 1H), 7.19-7.22 (m, 2H), 7.25-7.33 (m, 4H), 7.39-7.41 (m, 2H), 7.50-7.54 (m, 1H), 8.31 (d, *J* = 6.4 Hz, 1H), 10.73 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 21.8, 37.6, 48.3, 111.7, 117.1, 118.7, 119.4, 120.6, 121.9, 124.6, 126.3, 126.4, 128.9, 130.4, 130.6, 131.4, 137.3, 140.6, 144.6, 146.7, 197.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₉BrN₂NaO₂ [M+Na]⁺: 457.0522; Found: 457.0524.

6df: 90%, 93% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 12.31$ min; $\tau_{minor} = 9.76$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 2.34 (s, 3H), 3.62-3.68 (m, 1H), 4.02-4.07 (m, 1H), 5.23-5.26 (m, 1H), 6.73 (d, *J* = 8.4 Hz, 1H), 7.06-7.15 (m, 3H), 7.20-7.37 (m, 5H), 7.52-7.59 (m, 2H), 8.33 (d, *J* = 6.4 Hz, 1H), 10.75 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 21.8, 37.2, 47.9, 111.8, 116.5, 118.7, 120.7, 122.6, 124.1, 124.7, 126.4, 126.5, 128.3, 128.6, 129.1, 129.9, 130.7, 133.0, 137.3, 140.7, 143.5, 146.6, 197.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₉BrN₂NaO₂ [M+Na]⁺: 457.0522; Found: 457.0525.

6dg: 88%, 91% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 10.01$ min; $\tau_{minor} = 8.61$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 1.06-1.10 (m, 3H), 2.30 (s, 3H), 2.44-2.50 (m, 2H), 3.71-3.77 (m, 1H), 3.90-3.96 (m, 1H), 4.66-4.70 (m, 1H), 6.66-6.68 (m, 1H), 7.00 (d, *J* = 8.0 Hz, 2H), 7.06 (s, 1H), 7.10-7.12 (m, 2H), 7.16-7.20 (m, 3H), 7.23-7.27 (m, 1H), 7.44-7.48 (m, 1H), 8.27 (d, *J* = 6.0 Hz, 1H), 10.66 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 16.1, 21.8, 28.2, 38.0, 48.6, 111.6, 117.8, 118.9, 120.5, 121.7, 124.7, 126.2, 126.3, 128.0, 128.1, 128.8, 130.5, 137.3, 140.5, 141.7, 142.3, 146.9, 197.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₅H₂₄N₂NaO₂ [M+Na]⁺: 407.1730; Found: 407.1735.

6ea: 91%, 93% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.73$ min; $\tau_{minor} = 17.14$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.42 (s, 3H), 3.83-3.89 (m, 1H), 4.00-4.06 (m, 1H), 4.80-4.84 (m, 1H), 6.79-6.84 (m, 2H), 7.16-7.28 (m, 4H), 7.32-7.37 (m, 4H), 7.50-7.54 (m, 1H), 8.33 (d, *J* = 6.4 Hz, 1H), 10.89 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 17.2, 37.8, 48.2, 116.6, 117.5, 119.1, 121.0, 122.1, 122.5, 126.3, 126.4, 126.5, 126.6, 126.9, 128.0, 128.9, 130.5, 133.3, 136.3, 140.6, 146.7, 147.9, 197.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₉ClN₂NaO₂ [M+Na]⁺: 413.1027; Found: 413.1024.

6eb: 90%, 93% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 15.55$ min; $\tau_{minor} = 18.83$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.42 (s, 3H), 3.68-3.74 (m, 1H), 4.09-4.15 (m, 1H), 5.29-5.33 (m, 1H), 6.80-6.84 (m, 2H), 7.16-7.21 (m, 3H), 7.26-7.30 (m, 2H), 7.33-7.41 (m, 3H), 7.52-7.56 (m, 1H), 8.34 (d, *J* = 6.4 Hz, 1H), 10.89 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 17.2, 34.3, 47.7, 116.4, 117.0, 119.2, 121.1, 122.1, 123.0, 126.3, 126.4, 126.5, 127.7, 128.3, 129.0, 129.7, 129.8, 132.9, 136.4, 140.7, 142.0, 146.6, 197.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₁₉ClN₂NaO₂ [M+Na]⁺: 413.1027; Found: 413.1023.

6ec: 88%, 91% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 8.53$ min; $\tau_{minor} = 6.85$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 1.09-1.13 (m, 3H), 2.41 (s, 3H), 2.47-2.53 (m, 2H), 3.75-3.81 (m, 1H), 3.95-4.01 (m, 1H), 4.71-4.75 (m, 1H), 6.76-6.82 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 7.14-7.31 (m, 6H), 7.47-7.51 (m, 1H), 8.31 (d, *J* = 6.4 Hz, 1H), 10.81 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 16.1, 17.2, 28.2, 38.0, 48.6, 116.8, 118.4, 119.0, 120.9, 122.0, 122.1, 126.2, 126.3, 126.5, 128.0, 128.8, 136.4, 140.5, 141.7, 142.3, 146.9, 197.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₅H₂₄N₂NaO₂ [M+Na]⁺: 407.1730; Found: 407.1735.

6fa: Product in accordance with literature characterization data⁸. 65% yield, 82% ee, $[\alpha]_D^{20} = +2.0$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IA column

(70/30 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 10.44$ min; $\tau_{minor} = 9.83$ min). ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.62 (s, 3H), 3.86-3.92 (m, 1H), 3.97-4.03 (m, 1H), 4.82-4.86 (m, 1H), 6.85 (s, 1H), 6.88-6.92 (m, 1H), 7.00-7.07 (m, 4H), 7.11-7.17 (m, 4H), 7.23-7.25 (m, 2H), 7.35 (d, *J* = 7.6 Hz, 1H), 8.06 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 31.6, 37.5, 48.1, 108.0, 116.3, 117.8, 118.5, 120.6, 124.5, 125.2, 125.3, 125.5, 126.0, 126.5, 126.8, 127.3, 136.2, 139.1, 143.0, 146.0, 196.1.

7. Control experiments and HPLC spectra for compound 6aa

In a sealed tube equipped with a magnetic stirring bar, to the mixture of Ni(OTf)₂ (4.0 mol %), 5.0 mol % of L in 1.5 mL of DCM was added 4a (0.30 mmol), and 5a (0.20 mmol). The reaction mixture was stirred at room temperature for 2 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 6aa, using hexane/EtOAc (10/1, v/v) as the eluent.

#	Time	Area	Height	Width	Area%	Symmetry
1	15.649	60508.2	1213.1	0.7869	97.256	0.755
2	19.007	1707.3	29.8	0.9066	2.744	0.844

8. References

(a) P. K. Singh and V. K. Singh, Org. Lett., 2008, 10, 4121-4124; (b) J. George and B. V.
S. Reddy, Org. Biomol. Chem., 2012, 10, 4731-4738; (c) X. Liang, Y. Gui, K. Li, J. Li, Z.
Zha, L. Shi and Z. Wang, Chem. Commun., 2020, 56, 11118-11121.

9. X-ray crystal data for compounds L1p, L1r and L1a-Ni(OTf)₂·3H₂O complex

Table 51 Crystal data and struct	are remement for Lip
Identification code	L1p
Empirical formula	$C_{34}H_{30}Cl_2N_6O_2$
Formula weight	625.54
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	P21
a/Å, b/Å, c/Å	13.2041(3), 8.8612(3), 14.7734(3)
$\alpha /^{\circ}, \beta /^{\circ}, \gamma /^{\circ},$	90, 92.657(2), 90
Volume/Å ³	1726.69(8)
Z	2
$\rho_{calc}g/cm^3$	1.203
μ/mm^{-1}	1.993
F(000)	652.0
Radiation	Cu Kα (λ = 1.54184)
Crystal size/mm ³	$0.15 \times 0.12 \times 0.11$
2Θ range for data collection/°	5.988 to 147.192
Index ranges	$-13 \le h \le 16, -10 \le k \le 10, -18 \le l \le 17$
Reflections collected	25280
Independent reflections	$6690 [R_{int} = 0.0479, R_{sigma} = 0.0370]$
Data/restraints/parameters	6690/451/461
Goodness-of-fit on F ²	1.057
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0696, wR_2 = 0.1974$
Final R indexes [all data]	$R_1 = 0.0716, wR_2 = 0.1991$
Largest diff. peak/hole / e Å ⁻³	0.76/-0.47
Flack parameter	0.033(12)

Table S1 Crystal data and structure refinement for L1p

Crystal Data for $C_{34}H_{30}Cl_2N_6O_2$ (M =625.54 g/mol): monoclinic, space group P2₁ (no. 4), a = 13.2041(3) Å, b = 8.8612(3) Å, c = 14.7734(3) Å, β = 92.657(2)°, V = 1726.69(8) Å³, Z = 2, T = 169.99(10) K, μ (Cu K α) = 1.993 mm⁻¹, *Dcalc* = 1.203 g/cm³, 25280 reflections measured (5.988° $\leq 2\Theta \leq 147.192^{\circ}$), 6690 unique ($R_{int} = 0.0479$, $R_{sigma} = 0.0370$) which were used in all calculations. The final R_1 was 0.0696 (I > 2 σ (I)) and wR_2 was 0.1991 (all data).

Table S2 Crystal data and structure refinement for L1r

Identification code	L1r
Empirical formula	$C_{34}H_{32}F_2N_6O_3$
Formula weight	610.65
Temperature/K	149.98(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	8.7651(2), 13.5600(3), 24.7099(7)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90
Volume/Å ³	2936.88(14)
Z	4
$\rho_{calc}g/cm^3$	1.381
µ/mm ⁻¹	0.820
F(000)	1280.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$
2Θ range for data collection/°	7.154 to 146.576
Index ranges	$-10 \le h \le 10, -14 \le k \le 16, -29 \le l \le 30$
Reflections collected	24274
Independent reflections	5730 [$R_{int} = 0.0405$, $R_{sigma} = 0.0326$]
Data/restraints/parameters	5730/3/412
Goodness-of-fit on F ²	1.035
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0472, wR_2 = 0.1223$
Final R indexes [all data]	$R_1 = 0.0589, wR_2 = 0.1308$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.24
Flack parameter	-0.09(9)/-0.05(7)

Crystal Data for $C_{34}H_{32}F_2N_6O_3$ (M = 610.65 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 8.7651(2) Å, b = 13.5600(3) Å, c = 24.7099(7) Å, V = 2936.88(14) Å³, Z = 4, T = 149.98(10) K, μ (Cu K α) = 0.820 mm⁻¹, *Dcalc* = 1.381 g/cm³, 24274 reflections measured (7.154° $\leq 2\Theta \leq 146.576^\circ$), 5730 unique ($R_{int} = 0.0405$, $R_{sigma} = 0.0326$) which were used in all calculations. The final R_1 was 0.0472 (I > 2 σ (I)) and wR_2 was 0.1308 (all data).

Table S3 Crystal data and structure refinement for L1a-Ni(OTf)2-3H2O complex

Identification code	L1a-Ni(OTf) ₂ -3H ₂ O complex
Empirical formula	$C_{40}H_{42}F_6N_6NiO_{11}S_2\\$
Formula weight	1019.62
Temperature/K	169.99(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	14.2901(4), 22.2090(8), 15.6839(4)
$\alpha'^{\circ}, \beta'^{\circ}, \gamma'^{\circ},$	90, 90, 90
Volume/Å ³	4977.6(3)
Z	4
$\rho_{calc}g/cm^3$	1.361
µ/mm ⁻¹	2.065
F(000)	2104.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	$0.15 \times 0.13 \times 0.1$
2Θ range for data collection/°	6.9 to 147.906
Index ranges	$-17 \le h \le 14, -22 \le k \le 27, -18 \le l \le 19$
Reflections collected	27893
Independent reflections	9876 [$R_{int} = 0.0507, R_{sigma} = 0.0504$]
Data/restraints/parameters	9876/405/741
Goodness-of-fit on F ²	1.016
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0616, wR_2 = 0.1675$
Final R indexes [all data]	$R_1 = 0.0666, wR_2 = 0.1730$
Largest diff. peak/hole / e Å ⁻³	0.53/-0.99
Flack parameter	0.011(16)/0.02(3)

Crystal Data for $C_{40}H_{42}F_6N_6NiO_{11}S_2$ (M = 1019.62 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 14.2901(4) Å, b = 22.2090(8) Å, c = 15.6839(4) Å, V = 4977.6(3) Å³, Z = 4, T = 169.99(10) K, μ (Cu K α) = 2.065 mm⁻¹, *Dcalc* = 1.361 g/cm³, 27893 reflections measured ($6.9^{\circ} \le 2\Theta \le 147.906^{\circ}$), 9876 unique ($R_{int} = 0.0507$, $R_{sigma} = 0.0504$) which were used in all calculations. The final R_1 was 0.0616 (I > 2 σ (I)) and wR_2 was 0.1730 (all data).

10. The copies of ¹H NMR, ¹³C NMR and HPLC spectra for compounds L and 6

S26

f1 (ppm)

¹H and ¹³C NMR of L1b

¹H and ¹³C NMR of L1c

¹H and ¹³C NMR of L1d

¹H and ¹³C NMR of L1f

¹H and ¹³C NMR of L1g

¹H and ¹³C NMR of L1h

¹H and ¹³C NMR of L1i

¹H and ¹³C NMR of L1j

¹H and ¹³C NMR of L1k

¹H and ¹³C NMR of L11

¹H and ¹³C NMR of L1m

¹H and ¹³C NMR of L1n

¹H and ¹³C NMR of L1p

¹H and ¹³C NMR of L1q

S44

¹H and ¹³C NMR of 6aa

#	Time	Area	Height	Width	Area%	Symmetry
1	16.908	15469.6	322.8	0.7311	50,175	0.684
2	20.674	15361.4	269	0.8823	49.825	0.746

#	Time	Area	Height	Width	Area%	Symmetry
1	12.648	14400.3	396.7	0.5545	49.968	0.617
2	14.722	14418.9	365.4	0.6134	50.032	0.759

#	Time	Area	Height	Width	Area%	Symmetry
1	12.659	50583.1	1469.2	0.5257	96.257	0.603
2	14.841	1967.1	51.6	0.5889	3.743	0.866

#	Time	Area	Height	Width	Area%	Symmetry
1	13.301	7105.3	253.2	0.4677	50.342	0.626
2	14.784	7008.6	227.9	0.5125	49.658	0.629

#	Time	Area	Height	Width	Area%	Symmetry
1	13.441	197.4	7.5	0.4108	0.523	0.758
2	14.69	37555	1198.5	0.4666	99.477	0.553

¹H and ¹³C NMR of 6ad

#	Time	Area	Height	Width	Area%	Symmetry
1	10.897	10580.6	358.7	0.4916	49.992	0.73
2	15.047	10584.1	250.6	0.7038	50.008	0.739

#	Time	Area	Height	Width	Area%	Symmetry
1	11.239	50328.2	1642	0.4706	95.003	0.728
2	15.823	2647.1	57.5	0.7023	4.997	0.786

T.

¹H and ¹³C NMR of 6ae

#	Time	Area	Height	Width	Area%	Symmetry
1	12.636	85716.5	2353.9	0.5598	96.789	0.637
2	15.318	2843.6	65.6	0.6667	3.211	0.834

¹H and ¹³C NMR of 6af

S55

#	Time	Area	Height	Width	Area%	Symmetry
1	20.932	26457.1	412.8	0.9808	49.833	0.686
2	28.121	26634	324.6	1.3674	50.167	0.742

	#	Time	Area	Height	Width	Area%	Symmetry
	1	22.047	62850.2	921.9	1.0514	96.277	0.71
	2	29.97	2430.7	27	1.3485	3.723	0.796
L	Z	29.97	2430.7	27	1.3485	3.723	0.796

S57

#	Time	Area	Height	Width	Area%	Symmetry
1	18.055	83676.7	1626.2	0.7923	96.394	0.746
2	26.358	3130	42.3	1.1501	3.606	0.732

¹H and ¹³C NMR of 6ah

#	Time	Area	Height	Width	Area%	Symmetry
1	14.637	67482.9	2234.5	0.4733	95.246	1.325
2	15.767	3368.4	121.1	0.4637	4.754	0.744

¹H and ¹³C NMR of 6aj

#	Time	Area	Height	Width	Area%	Symmetry
1	10.869	14646.9	617.7	0.3516	49.828	0.534
2	12.474	14748	544.2	0.4516	50.172	0.588

1 10.967 1833.5 67.6 0.4004 3.299 0.729	Ŧ	Lime	Area	Height	Width	Area%	Symmetry
	1	10.967	1833.5	67.6	0.4004	3.299	0.729
2 12.385 53751.4 1935.7 0.415 96.701 0.54	2	12.385	53751.4	1935.7	0.415	96.701	0.54

¹H and ¹³C NMR of 6ak

1 12.05 50616.2 1493 0.5651 95.006 0.786 2 15.177 2660.5 66.4 0.6682 4.994 0.773
2 15.177 2660.5 66.4 0.6682 4.994 0.773

¹H and ¹³C NMR of 6al

#	Time	Area	Height	Width	Area%	Symmetry
1	10.22	12040.7	543.1	0.3307	50.012	0.558
2	11.929	12035.1	469.2	0.4275	49.988	0.609

#	Time	Area	Height	WIOCN	Area%	Symmetry
1	10.325	1491.8	67.5	0.3319	3.446	0.65
2	11.861	41794.1	1662.9	0.3732	96.554	0.552
2	11.861	41/94.1	1662.9	0.3732	96,554	0.552

¹H and ¹³C NMR of 6am

#	Time	Area	Height	Width	Area%	Symmetry
1	17.782	22235.6	467.3	0.7291	50.061	0.758
2	22,307	22181.5	368.8	0.9197	49.939	0.758

#	Time	Area	Height	Width	Area%	Symmetry
1	18.478	59184.6	1194.1	0.7613	96.489	0.734
2	23.414	2153.4	33.5	0.9903	3.511	0.758

¹H and ¹³C NMR of 6ba

1 9.256 2135 22 1.6158 3.087 0.904	#	÷	Time	Area	Height	Width	Area%	Symmetry
	1		9.256	2135	22	1.6158	3.087	0.904
2 11.975 67026.5 1998.6 0.5133 96.913 0.667	2		11.975	67026.5	1998.6	0.5133	96.913	0.667
¹H and ¹³C NMR of 6ca

#	Time	Area	Height	Width	Area%	Symmetr
1	9.411	10743.2	462.9	0.3418	50.111	0.471
2	11.439	10695.6	401.1	0.4011	49.889	0.575

¹H and ¹³C NMR of 6da

¹H and ¹³C NMR of 6db

#	Time	Area	Height	Width	Area%	Symmetry
1	12.748	4895.7	134.8	0.5606	49.656	0.712
2	14.57	4963.5	123.9	0.6155	50.344	0.781

¹H and ¹³C NMR of 6dc

1 11.238 46039.1 1534.6 0.46 95.203 0.74
2 15.165 2319.9 55.7 0.6938 4.797 0.659

¹H and ¹³C NMR of 6de

¹H and ¹³C NMR of 6df

	VWD1 A, Wavel	length=254 nm (L	-HP-T-47.D)						
mAU -						0 A			
800 -						2			
					1				
600 -					1				
400 -					1				
-00					1	1			
200 -				22					
				2.0					
-									
0-				~~	- 1/				
0-	2	5 5	7.5	10		12.5	15	,,, 17.5	
0-	2.	5 5	7.5	10		12.5	15	17.5	
0-	2.	5 5	7.5	10		12.5	15	17.5	
	2. Time	5 5 Area	7.5 Height	10 Width	/	12.5 Symmetry	15	17.5	
0	2. Time 9.757	5 5 Area 1898.9	7.5 Height 41.7	10 Width 0.6888	Area% 3.293	12.5 Symmetry 0.688	, 15	17.5	

¹H and ¹³C NMR of 6dg

¹H and ¹³C NMR of 6ea

¹H and ¹³C NMR of 6eb

1 6.846 2378.5 164.9 0.2405 4.283 0.677
2 8.534 53158.7 2821.3 0.2848 95.717 0.584

#	Time	Area	Height	Width	Area%	Symmetry
1	9.833	4458.6	238	0.2886	8.929	0.753
2	10.438	45476.8	2020	0.3377	91.071	0.587
2	10.438	45476.8	2020	0.3377	91.071	0.587
_						