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Figure S1. (A)The precursor ratios, and (B) the reaction temperature and time were optimized 

to observe the highest fluorescence for APDP-CDs. [obtained-CDs] = 0.039 mg/mL, λex = 370 

nm.



Calculation of the quantum yields

The fluorescence quantum yields (QYs) of the obtained APDP-CDs were determined by a 

relative method according to previous reports using quinine sulfate (QS) in 0.1 M H2SO4 (Φr 

= 54%) as the reference [27, 29]. The QYs value of the sample was calculated using the 

following equation:

Φ𝑠 = Φ𝑟 ⋅ (𝐼𝑠 𝐴𝑠) ⋅ (𝐴𝑟 𝐼𝑟) ⋅ (𝜂𝑠 𝜂𝑟)2

                      (S1)                                            = Φ𝑟 ⋅ (𝐾𝑠 ∕ 𝐾𝑟) ⋅ (𝜂𝑠 ∕ 𝜂𝑟)2

Where Φ is the relative quantum yields and η is the refractive index of the solvent. K is the 

slope determined by the curves. The subscript "r" refers to the reference, quinine sulfate dye 

dissolved in 0.1M H2SO4 with quantum yields (54%), and "s" for the sample. For the aqueous 

solutions, the refractive index ηs = ηr = 1.33. To get more reliable results, the optical density of 

the sample was kept value were between 0  0.06 to minimize the inner-filter effects at the 

excitation wavelength. The fluorescence spectra were recorded and then integrated of intensity. 

Figure S4 (Supplementary Information) summarizes the QYs of quinine sulfate and the 

obtained APDP-CDs, respectively.
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Figure S2. Plots integrated fluorescence intensity of quinine sulfate (QS, the reference) and 

APDP-CDs as a function of optical absorbance at 360 nm and relevant data.



Figure S3. Stability of the as-prepared APDP-CDs with respect to (A) fluorescence emission 

intensity at 425 nm, and (B) emission wavelength with the maximum intensity, λex = 370 nm, 

[APDP-CDs] = 0.039 mg/mL.



Figure S4. The relative fluorescence emission intensity of APDP-CDs in the presence of 

different concentrations of NaCl solutions. [APDP-CDs] = 0.039 mg/mL, ex = 370 nm.



Figure S5. Bar diagram showing the influence of pH on the FL intensity at 425 nm of APDP-

CDs in the absence and presence of 1 mM Cr2O7
2- in various pH solutions. Determination 

conditions: [APDP-CDs] = 0.039 mg/mL and λex = 370 nm.



Figure S6. (A) The emission spectra and (B) normalized emission spectra of APDP-CDs in 

different solvents. Inset: fluorescence photos of APDP-CDs in different solvents. [APDP-CDs] 

= 0.039 mg/mL, λex = 370 nm.



Figure S7. The relative fluorescence intensity spectra showing Cr2O7
2- mediated quenching of 

the fluorescence of APDP-CDs with respect to time, [Cr2O7
2-] = 1.0 mM, [APDP-CDs] = 0.039 

mg/mL, ex = 370 nm.



 

Figure S8. The relative fluorescence intensity spectra of APDP-CDs-Cr2O7
2- system in the 

presence of various analytes, respectively. Measurement conditions: [APDP-CDs] = 0.039 

mg/mL, [Cr2O7
2- & interfering anions] = 100 M, λex = 370 nm.



Figure S9. The zeta potential values for (A) APDP-CDs and (B) APDP-CDs-Cr2O7
2- (in the 

presence of Cr2O7
2-), respectively. [APDP-CDs] = 0.039 mg/mL, [Cr2O7

2-] = 1 mM.



Figure S10. (A) Broad range XPS spectra of APDP-CDs-Cr2O7
2-. Elemental analysis of (B) C 

1s, (C) O 1s, (D) N 1s, (E) B 1s and (F) Cr 2p. XPS analysis has been done using the vacuum 

dried solid.



Table S1. The comparison of different materials for Cr2O7
2- determination.

Materials Method of 

detection

Limit of 

detection 

Linear range QYs Reference

N-GQDs fluorescence 40 nM 0-140 µM 18.6% 1

CD-PEI FAAS strategy 0.21 μg/L   2

 chromatography ~0.5 μg/L   4

 UA-DES-

ELPME-FAAS

5.5 μg/L   6

M-Cdots fluorescence 0.67 µM 2-100 µM 4.9% 11

fluorescence 0.14 µM 0.1-5 µMCDs

Colorimetric 0.41 µM 0-25 µM

 12

BNCDs fluorescence 0.41 µM 0-100 µM  37

Ag-CDs fluorescence 0.0437µM 0.1-0.6 µM  40

chemosensor fluorescence 0.175 µM 1-500 µM  41

CTAB-
LaHAP@PANI

adsorption 98.20 mg/g   42

Chitosan cross-
linked hydrous 
cerium‑copper 
oxide (CHCCO)

adsorption 297.62 mg/g 5-400 mg/L  43

19 nM 300 nM-80 µMAPDP-CDs fluorescence

0.17 µM 80 µM -1 mM

37.6% Present 

work



Table S2. The lifetime of APDP-CDs in the absence and presence of 1 mM Cr2O7
2-, 

respectively.

Moiety τ 1

ns

α 1

(%)

τ2

ns

α2

(%)

τ3

ns

α3

(%)

τav

ns

APDP-CDs 1.8823 1.33 4.124 95.07 17.27 3.61 5.91

APDP-CDs-
Cr2O7

2
0.41 0.01 3.5844 92.49 8.4965  7.5 4.38

The average lifetime (  has been calculated using the following equation,𝜏𝑎𝑣)

                                               (S2)

 𝜏𝑎𝑣 =

𝑥

∑
𝑛 = 1

𝛼𝑛𝜏2
𝑛

𝑥

∑
𝑛 = 1

𝛼𝑛𝜏𝑛
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