Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

> Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Functional covalent organic framework H₂S sensor for periodontitis monitoring and antibacterial treatment

Chenkai Chu,^a Xiao Lian,^{bc} Qian Zheng,^a Yongxin Tao,^{*a} Yong Qin^{*a} and Jinmin Wang^{*ab}

^a School of Petrochemical Engineering, Changzhou University, Changzhou 213164,
 China

^b Jiangsu Key Laboratory of Advanced Manufacturing for High-end Chemicals, Changzhou University, Changzhou 213164, China

[°]Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China

* Corresponding author: Yongxin Tao, Email: taoyx@cczu.edu.cn; Yong Qin, Email: qinyong@cczu.edu.cn; Jinmin Wang, Email: wjm@cczu.edu.cn

Scheme S1 Schematic representation for synthesis EB-TFP.

Fig. S1 FTIR analysis of EB-TFP and its raw materials (TFP and EB).

Fig. S2 PXRD profiles of EB-TFP: the experimental pattern (blue), the Pawley refined pattern (red), the Bragg positions (orange), and the refinement differences (green).

Fig. S3 PXRD of EB-TFP@PB soaked in different pH solutions.

Fig. S4 PXRD pattern of EB-TFP@PB before and after soaking in water.

Fig. S5 SEM images of EB-TFP (a) and EB-TFP@PB (b)

Fig. S6 TEM images of EB-TFP (a) and EB-TFP@PB (b).

Fig. S7 UV-Vis absorption spectrum of PB in aqueous solution.

Fig. S8 (a) Concentration-dependent absorbance of PB and PB in the supernatant after preparing EB-TFP@PB. (b) Calibration curves of EB-TFP@PB in the presence of 0–100 nM H₂S.

Fig. S9 Emission spectra of EB-TFP@PB with different incubation time (2-60 min).

Fig. S10 Emission spectra of EB-TFP@PB added H_2S (10⁻⁴ M) with different incubation time (2-60 min).

Fig. S11 Fluorescence intensity of EB-TFP@PB with and without H_2S (10⁻⁴ M) with different incubation time, and the fluorescence enhancement factor under corresponding conditions.

Fig. S12 The variation of fluorescence intensity with time at different concentrations.

Fig. S13 Fluorescence intensity of EB-TFP@PB with and without H_2S (10⁻⁴ M) with different pH solutions, and the fluorescence enhancement factor under corresponding conditions.

Fig. S14 Fluorescence intensity of EB-TFP@PB before and after soaking in water.

Fig. S15 Fluorescence spectra of EB-TFP@PB sensing H_2S gas with different concentrations (0–160 ppb).

Fig. S16 Antibacterial rate of EB-TFP@PB with different concentrations against S. aureus.

Fig. S17 The long-term antibacterial experiment of EB-TFP@PB.

Fig. S18 ζ -Potential analysis of EB-TFP@PB in aqueous solution.

Element	Percentage by mass
С	78.86
Ν	8.13
0	12.00
Na	1.01

Table S1 The mass percentage of all elements in EB-TFP@PB determined by XPS.