Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Cerium-doped Mn₂O₃ Microspheres: A High-performance Cathode Material for

Aqueous Zinc-ion Batteries

Xin Li^a, Wenyu Wang^a, Linwen Li^b, Chengyu Xue^a, Yang Chen^a, Tiantian Zhu^a,

Fuxiang Wei^{a,*}, Yanwei Sui^a, Jie He^b, Zunyang Zhang^b

^a School of Materials and Physics, China University of Mining & Technology,

Xuzhou , 221116, PR China

^bXuzhou Huaihai New Energy Vehicle Parts Co., Ltd, Xuzhou, 221116, PR China

* Corresponding author

Fuxiang Wei: weifuxiang2001@163.com

Fig. S1 XRD spectra of carbonized MnBTC

Fig. S2 cycling performance data of MnBTC after carbonization

Ex-situ XRD patterns of Ce-Mn₂O₃ cathodes

In the study of the Zn^{2+} storage mechanism of Ce-Mn₂O₃ cathode materials, the phase composition of the material at different charge-discharge states was examined through ex-situ XRD testing. **Fig. 8 (a)** displays the galvanostatic charge-discharge (GCD) curves at a current density of 0.1 A g⁻¹, with different voltage points indicated. **Figure 8 (b)** illustrates the XRD patterns of the Ce-Mn₂O₃ cathode at various voltage points. The initial state Is exhibits diffraction peaks for titanium foil and Mn₂O₃. Upon discharging to 1.1 V (I), 1.0 V (II), and 0.8 V (III), the formation of a new phase, Zn₄SO₄(OH)₆·4H₂O, is observed, with its diffraction peaks intensifying as the voltage decreases, reaching a maximum at 0.8 V. Upon charging to 1.4 V (IV), 1.6 V (V), and 1.9 V (VI), the diffraction peaks of Zn₄SO₄(OH)₆·4H₂O gradually diminish, almost vanishing at 1.9 V, indicating the reversibility of the material. Upon re-discharging to 0.8 V (VII), the phase reappears, further confirming the reversibility of the material. These results suggest that the Ce-Mn₂O₃ cathode involves a co-intercalation/de-intercalation mechanism of Zn²⁺ and H⁺ during the charge-discharge process.

Fig. S3 (a) Constant-current charge/discharge curve of Ce- Mn_2O_3 anode at 0.1 A g⁻¹ current density; (b) Ex-situ XRD patterns of Ce- Mn_2O_3 cathodes

		Reversible capacity			
Materials	Current density (mA g ⁻¹)	Cycle numbers	$(mAh g^{-1})$	Reference	
δ-MnO2	83	100	112	1	
D-β-MnO2	500	300	200	2	
Mn3O4@NC	1000	700	97	3	
O _{Cu} Mn2O3	1000	600	95	4	
Ce-Mn ₂ O ₃	1,000	1000	114.4	This work	
T 11 01	a · · · · ·	•1 1	•. • ••	0	

 Table S1 Comparison on discharge reversible capacity and cycling performance

 between our work and resent Mn-based publications

Supplementary reference

- 1 M. H. Alfaruqi, J. Gim, S. Kim, J. Song, T. P. Duong, J. Jo, Z. Xiu, V. Mathew and J. Kim, *Electrochem. Commun.*, 2015, **60**, 121–125.
- 2 M. Han, J. Huang, S. Liang, L. Shan, X. Xie, Z. Yi, Y. Wang, S. Guo and J. Zhou, *iScience*, 2020, **23**, 100797.
- 3 M. Sun, D.-S. Li, Y.-F. Wang, W.-L. Liu, M.-M. Ren, F.-G. Kong, S.-J. Wang, Y.-Z. Guo and Y.-M. Liu, *ChemElectroChem*, 2019, 6, 2510–2516.
- 4 N. Liu, X. Wu, Y. Yin, A. Chen, C. Zhao, Z. Guo, L. Fan and N. Zhang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 28199–28205.