Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

## Supplementary Information

## In Situ Grown NiFe-Based MOF for Efficient Oxygen Evolution in Alkaline Seawater at High Current Densities

Yawen Hu<sup>a</sup>, Xin Zhao<sup>a</sup>, Yulin Min<sup>a, b</sup>, Qunjie Xu<sup>a, b\*</sup>, and Qiaoxia Li<sup>a, b\*</sup>

a Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China

*b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China* 

\* E-mail address: liqiaoxia@shiep.edu.cn (Q. Li). xuqunjie@shiep.edu.cn (Q. Xu).



Fig. S1 SEM images of (a-d) bulk NFN-MOF, (e, f) Ni-MOF, and (g, h) Fe-MOF.



Fig. S2 TEM-EDX elemental composition of layered NFN-MOF.



**Fig. S3** N<sub>2</sub> adsorption-desorption isotherms of (a) sheet NFN-MOF and (b) bulk NFN-MOF. Pore size distribution of (c) sheet NFN-MOF and (d) bulk NFN-MOF.



Fig. S4 Contact angle of (a) sheet NFN-MOF and (b) bulk NFN-MOF.



Fig. S5 SEM images of the NFN-MOF at (a) high and (b) low resolutions.



**Fig. S6** SEM images of the NFN-MOF/NF after 100 hours of OER in (a, b) 1 M KOH, (c, d) 1 M KOH + 0.5 M NaCl and (e, f) 1 M KOH + Seawater at 200 mA cm<sup>-2</sup>.



**Fig. S7** (a) Full XPS measurement spectra and corresponding high-resolution XPS spectra of (b) Ni 2p and (c) Fe 2p of NFN-MOF/NF after 100 h of chronopotential (V-t) testing at 200 mA cm<sup>-2</sup>.



**Fig. S8** LSV curves of OER of (a, b) NFN-MOF/NF, comparison electrodes and (c, d) M-Fe-NH<sub>2</sub> MOF (M = Ni/Fe/Co) in 1 M KOH solution.



Fig. S9 Powder XRD patterns of M-Fe-NH<sub>2</sub> MOF (M = Ni/Fe/Co).



**Fig. S10** (a) Powder XRD patterns of Ni-MOF (without Fe). Reprinted from Ref. 31 of the manuscript. (b) Structural representation of  $[M_3O(COO)_6(H_2O)_3]$  cluster in MIL-88 MOF family. Reprinted from Ref. 31 of the manuscript.

**Table S1.** Comparison of BET surface area between NFN-MOF and recently reportedNiFe based electrocatalysts.

| Material                      | BET surface area (m <sup>2</sup> g <sup>-1</sup> ) | Reference |
|-------------------------------|----------------------------------------------------|-----------|
| Sheet NFN-MOF                 | 183.0                                              | This work |
| Bulk NFN-MOF                  | 65.0                                               | This work |
| NiFe-MOF-c                    | 359.0                                              | [1]       |
| NiFe-MOF-a                    | 285.0                                              | [1]       |
| ZIF-8@Fe/Ni                   | 195.2                                              | [2]       |
| NiFe(1:1)O <sub>x</sub> @C    | 168.5                                              | [3]       |
| Graphene-based<br>FeO/NiO MOF | 123.2                                              | [4]       |
| NiFe(1:1)-LDH-MOF             | 109.4                                              | [3]       |
| NiFeopAHC                     | 62.9                                               | [5]       |
| Fe-Ni-MOF                     | 16.7                                               | [6]       |
| NiFe-MOF                      | 9.2                                                | [5]       |

## References

[1] K. Wei, X. Wang, X. Jiao, C. Li and D. Chen, Appl. Surf. Sci., 2021, 550, 149323.

[2] T. Zhang, X. Jin, G. Owens and Z. Chen, J. Colloid Interface Sci., 2021, 594, 398-408.

[3] X. Xu, T. Wang, M. Zheng, Y. Li, J. Shi, T. Tian, R. Jia and Y. Liu, *J. Alloys Compd.*, 2021, **875**, 159970.

[4] T. Noor, M. Mohtashim, N. Iqbal, S. R. Naqvi, N. Zaman, L. Rasheed and M. Yousuf, J. Electroanal. Chem., 2021, 890, 115249.

[5] F. M. Jais, S. Ibrahim, C. Y. Chee and Z. Ismail, *J. Environ. Chem. Eng.*, 2021, 9, 106367.

[6] Y. Hu, C. Yue, J. Wang, Y. Zhang, W. Fang, J. Dang, Y. Wu, H. Zhao and Z. Li, *Analyst*, 2020, **145**, 6349-6356.