Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

Synthesis and sulfide oxidation catalytic activity of copper monosubstituted Keggin-type polyoxometalate-based supramolecular

compound

Yixuan Zhang,^a Maochun Zhu,^a Yifei Liu,^a Xue Bai,^a Ange Zhang,^a Yanli Yang,^a Bin Li *^b and Shuxia Liu*^a

^a Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.

^b State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China.

1. Materials and Instrumentations.

Materials and Instrumentations. Except for K₅PW₁₁Cu(H₂O)O₃₉, which is synthesized according to literature,¹ all experimental reagents are purchased commercially, and the purity is analytical pure and not further purified; the water used is distilled. Powder X-ray diffraction (PXRD) measurements were performed on a Smartlab instrument with Cu Ka radiation ($\lambda = 1.5418$ Å, $2\theta = 5^{\circ}-50^{\circ}$, scan rate = 10° min⁻¹). Fourier transform infrared (FT-IR) spectra were collected on an Agilent Technologies Cary 630FT-IR spectrophotometer in the range 400-4000 cm⁻¹. Thermal gravimetric analysis (TGA) was conducted on a TGA 5500 of TA instruments under a nitrogen atmosphere with a heating rate of 10 °C min⁻¹ to 800 °C. ¹H-NMR spectra were recorded on a Bruker Advance 600 (1H: 600 MHz) at ambient temperature. The reactant conversion and product selectivity were monitored by Agilent GC-7820A gas chromatograph. Single-crystal X-ray diffraction (SCXRD) data of compound 1 was collected on the Bruker diffractometer with Mo K α radiation (λ =0.071073 nm) at 293 K. Crystal data and structure refinement are summarized in Table S1. The CCDC number for 1 is 2395457, it can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Compound	1
Empirical formula	$C_{144}H_{108}Cu_{10}N_{24}O_{166}P_4W_{44}$
Formula weight	13681.62
Temperature (K)	293(2)
Crystal system	triclinic
Space group	P-1
a(Å)	11.7259(6)
b(Å)	22.3057(12)
c(Å)	23.4333(13)
α(°)	94.292(5)
β(°)	96.418(5)
γ(°)	98.299(5)
Volume (Å ³)	6001.0(6)
Z, ρ_{calc} (g/cm ³)	1, 3.786
Radiation	Mo Ka ($\lambda = 0.71073$)
F (000)	6075.0
2θ range (°)	6.676 to 50

 $-13 \le h \le 9$

 $-24 \le k \le 26$ $-27 \le 1 \le 23$ 36977/20284

[Rint = 0.0730]

20284/2403/1794

0.900

0.0551, 0.0794

0.1075, 0.1011

2.40/-1.81

2. Supplemental Figures and Tables

 Table S1 Crystallographic data and structure refinement of 1.

 $\overline{R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|} \cdot wR_2 = \left[\sum [w (Fo^2 - Fc^2)^2] / \sum [w (Fo^2)^2]\right]^{1/2}$

index range

Reflections collected / unique

Data / restraints / parameters

Goodness-of-fit on F²

 $R_1, wR_2 [I > 2\sigma(I)]$

 R_1 , w R_2 [all data]

Largest diff. peak and hole

(e Å-3)

Bond Lengths (Å) and Angles (°)			
Cu1-N9	1.936(5)	Cu2-N3	2.012(4)
Cu1-N10	1.991(4)	Cu2-N4	1.912(4)
Cu1-N11	1.999(5)	Cu3-N5	1.968(5)
Cu1-N12	1.945(5)	Cu3-N6	1.934(5)
Cu2-N1	1.941(4)	Cu3-N7	1.979(5)
Cu2-N2	2.026(5)	Cu3-N8	2.047(5)
Cu2-O3	2.095(13)	Cu3-O43	2.415(12)
N4-Cu2-N3	83.36(14)	N9-Cu1-N12	155.4(3)
N4-Cu2-N2	98.0(2)	N9-Cu1-N11	102.6(2)
N4-Cu2-O3	92.1(5)	N9-Cu1-N10	83.31(17)
N4-Cu2-N1	177.8(2)	N5-Cu3-O43	78.8(4)
N3-Cu2-N2	122.9(2)	N5-Cu3-N8	101.63(16)
N3-Cu2-O3	131.2(6)	N5-Cu3-N7	161.4(3)
N2-Cu2-O3	105.9(6)	N8-Cu3-O43	117.1(4)
N1-Cu2-N3	94.6(2)	N7-Cu3-O43	82.8(3)
N1-Cu2-N2	82.39(17)	N7-Cu3-N8	84.32(15)
N1-Cu2-O3	89.8(5)	N6-Cu3-O43	89.6(4)
N12-Cu1-N11	84.65(15)	N6-Cu3-N5	82.26(16)
N12-Cu1-N10	101.3(2)	N6-Cu3-N8	153.4(3)
N10-Cu1-N11	152.2(3)	N6-Cu3-N7	100.4(2)

 Table S2 Selected bond lengths and angles for 1.

 Table S3 Selected hydrogen bond lengths (Å) and bond angles (°) of compound 1.

	0	0 ()	<u> </u>	
Donor-H···Acceptor	D-H/Å	H…A/Å	D····A/Å	D-H···A∕⁰
С38-Н38…О52	0.9308	2.6220	3.4770(134)	152.990
С62-Н62…О11	0.9301	2.6646	3.0570(15)	106.161
C46-H46…O17	0.9300	2.6540	3.4896(151)	149.853

Fig. S1 The 3D supramolecular stacking structure of compound 1.

Fig. S2 (a) The FT-IR spectrum of 1. (b) The PXRD patterns of 1. (c) The TG-DTG curves of 1.

Fig. S3 (a) PXRD patterns of **1** in different organic solvents for 3 days and (b) different pH values aqueous solutions for 24 h.

1		
Entry	electric pair	E^{θ}/V
1	O_2/H_2O	1.229
2	H_2O_2/H_2O	1.776
3	MPS/MPSO	1.52
4	RSH/RSSR	0.15

Table S4 Redox potentials of oxidizing agents and sulfides.

 E^{θ} is the redox potential of the oxidizer and sulfide relative to the standard hydrogen electrode.²

Entry	Catalyst	Conv.(%)	Sel.(%)
1	1	>99	96
2	—	42	73
3	phen	46	75
4	K ₅ PW ₁₁ Cu(H ₂ O)O ₃₉	90	87
5	$H_3PW_{12}O_{40}$	84	45
6	$Cu(NO_3)_2$	75	88
7	Cu(NO ₃) ₂ with IPA	44	
8	$Cu(NO_3)_2 + phen + K_5PW_{11}Cu(H_2O)O_3$	92	89

Table S5 The performance of different catalytic system in the oxidation of MPS.

Reaction conditions: MPS (0.2 mmol), 30 % H_2O_2 (0.6 mmol), MeOH (2 mL), catalyst (2.5 mol%), 50°C, 2h.

 Table S6 Effect of Radical Scavengers on the Oxidation of MPS Catalyzed by 1.

Radical scavengers	Time(h)	Conv.(%)
	2	>99
<i>p</i> -BQ (·O ₂ - /·O ₂ H)	2	98
IPA(·OH)	2	97.5

Reaction conditions: MPS (0.2 mmol), H_2O_2 (0.6 mmol), 1 (2.5 mol%), radical scavengers (0.2 mmol), MeOH (2 mL), 50°C.

Entry	Catalyst	Conv.(%)
1	-	<2
2	1	>99
3	Cu(NO ₃) ₂	60
4	$\mathrm{H_{3}PW_{12}O_{40}}$	6
5	K ₅ PW ₁₁ Cu(H ₂ O)O ₃₉	56
6	phen	<1
7	K ₅ PW ₁₁ Cu(H ₂ O)O ₃₉ +Cu(NO ₃) ₂	71

Table S7 The performance of different catalytic system in the oxidation of mercaptan.

Reaction conditions: 2-hydroxy-1-ethanethiol (0.2 mmol), O₂, ACN (3 mL), Catalyst (4 mol%), 50 °C, 6 h.

Fig. S4 ¹H-NMR spectra of 2-hydroxyethyl disulfide, the oxidation product of 2-hydroxy-1-ethanethiol.

Fig. S5 (a) Cyclic experiments of mercaptan oxidation catalyzed by **1**. (b) PXRD pattern of **1** before and after cycling. (c) FT-IR spectra of **1** before and after cycling.

Reference

- 1. C. M. Tourné, G. F. Tourné, S. A. Malik and T. J. R. Weakley, *J. Inorg. Nucl. Chem.*, 1970, **32**, 3875-3890.
- 2. R. D. Gall, M. Faraj and C. L. Hill, Inorg. Chem., 1994, 33, 5015-5021.