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SYNTHETIC DETAILS 

Synthesis of Pd/ImS3-12 nanoparticles 
 The Pd NPs were synthesized by the methodology previously described by some of us.1 A mixture 

containing K2PdCl4 (0.15 mmol), NaCl (4.0 mmol) and ImS3-12 (0.50 mmol) in 50 mL of distilled water was 
magnetically stirred in a 125 mL flask. Then, 5 mL of freshly prepared NaBH4 solution (12 mg mL-1) was 
quickly added under vigorous stirring and the yellow solution rapidly turned black, indicating the formation 
of Pd NPs. The aqueous dispersion was stirred for additional 24 hours and the amount of palladium was 
determined by FAAS, indicating [Pd] = 2.80 mM. Transmission electron microscopy revealed particles with 
3.77±0.58 nm diameter, in agreement the literature.1 

Synthesis of the branched additives ImS3b-n 

 The additives were prepared as shown in Scheme S1. The first step involved the preparation of the 
branched alkyl bromides and was adapted from Kastler and coworkers.2 In a 125 mL bottom-round flask, a 
mixture of 1 (22 mmol) and triphenylphosphine (35 mmol) was solubilized in 60 mL of chloroform. N-
bromosuccinimide (34 mmol) was added in small portions at 0 °C followed by stirring at room temperature 
for 12 hours. After solvent evaporation, the resulting orange slurry was filtered in a silica bed using hexane as 
eluent. The hexane solution was concentrated and the 2 was obtained as a colorless oil of high purity as judged 
by GC-MS (Figure S1 and S2). The second and third steps were performed using the methodologies described 
by Tondo and coworkers.3 In a 500 mL three-neck round-bottom flask and under argon atmosphere, a solution 
of imidazole (34.4 mmol) in dioxane (100 mL) was added to a sodium hydride suspension (34.4 mmol) in 150 
mL of 1,4-dioxane. The suspension was left for 2 hours at 90 °C. Subsequently, 2 was added drop-wise and 
the reaction was left for 48 hours at 90 °C. The solvent was evaporated, and the resulting yellow oil was diluted 
with dichloromethane (100 mL) and washed with water (4x100 mL). Solvent was dried over MgSO4, filtered 
and evaporated to furnish 3 as yellowish oil. In the last step, 1,3-propanesultone (11.26 mmol in 30 mL of dry 
acetone) was added dropwise to a solution of 3 (10 mmol) in 50 mL of dry acetone at 0° C. The reaction was 
left at room temperature for 5 days, resulting in 4 as a white solid that was filtered, washed with cold acetone 
(2x10 mL) and left to dry in a desiccator. The global yield for ImS3b-n ranged from of 70 to 80% relative to 
the starting alcohol. All compounds were characterized by 1H (Figures S5-S8), 13C NMR (Figures S9-S12), 
and LCMS-QTOF (Figures S43-S46). 

Scheme S1. Synthesis of the branched ImS3b-n additives. 

 

Effect of Pd/ImS3-12 concentration in the Heck-Mizoroki reaction 

To a glass ampoule (2 or 5 mL) was added the Pd/ImS3-12 dispersion ([Pd] = 2.80 mM; [ImS3-12] = 
9.12 mM), iodobenzene (1.0 mmol; 112 µL), triethylamine (2.0 mmol; 280 µL) and ethyl acrylate (2.0 mmol; 
220 µL). The tube was sealed and left in an oil bath at 80 °C with magnetic stirring for 24 hours. After this 
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period, the products were extracted with ethyl acetate (4x1 mL) and quantification was performed with GC-
MS using a calibration curve constructed with an authentic sample of ethyl cinnamate. 
 
Effect of additives in the Heck-Mizoroki reaction 

To a 2 mL glass ampoule was added the additive (see table below), water (100 µL), Pd/ImS3-12 (0.028 
mol% Pd, 100 µL), iodobenzene (1.0 mmol, 112 µL), triethylamine (2.0 mmol, 280 µL) and ethyl acrylate 
(2.0 mmol; 220 µL). The tube was sealed and left in an oil bath at 80 °C with strong magnetic stirring for 24 
hours. Reaction yield was determined as mentioned above. 

Table 1. Type and amount of additives used in this work. 
Additive mol% mass (mg) 
ImS3-12 5 17.9 
ImS3-12 10 35.8 
ImS3-12 20 71.7 

1-Propanol 20 12.0 
Ethyleneglycol 20 12.4 

ImS3b-4 10 35.8 
ImS3b-4 20 71.7 
ImS3b-6 10 41.5 
ImS3b-6 20 82.9 
ImS3b-8 10 47.1 
ImS3b-8 20 94.2 
ImS3b-10 10 52.7 
ImS3b-10 20 105.4 

 
Recycling experiments for the Heck-Mizoroki reaction 

In a 10 mL round bottom flask was added ImS3b-6 (20 mol%, 331.6 mg), water (400 µL), Pd/ImS3-
12 (0.028 mol% Pd, 400 µL), triethylamine (8.0 mmol; 1120 µL) iodobenzene (4.0 mmol; 448 µL) and ethyl 
acrylate (8.0 mmol; 880 mL). The reaction was left refluxing in an oil bath at 80 °C with strong magnetic 
stirring for 24 hours, open to air. After this period, the mixture was extracted with ethyl acetate (4x4 mL). The 
organic content was diluted in a 25 mL volumetric flask. After that, an aliquot was taken and diluted in a vial 
to proceed to the GC-MS analysis. The yield was determined using calibration curves of ethyl cinnamate and 
iodobenzene. The reaction was then repeated by adding the same amount of substrates and base to the initial 
round bottom flask containing the aqueous dispersion, i.e., no further amount Pd/ImS3-12 and ImS3b-6 were 
added to the system. 

Suzuki-Miyaura reaction 

To a 2 mL glass ampoule was added the additive (see table below), water (100 µL), Pd/ImS3-12 (0.028 
mol% Pd, 100 µL), iodobenzene (1.0 mmol, 112 µL), triethylamine (2.0 mmol, 280 µL) and ethyl acrylate 
(2.0 mmol; 220 µL). The tube was sealed and left in an oil bath at 80 °C with strong magnetic stirring for 24 
hours. Reaction yield was determined as mentioned above. 
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Figure S1. Appearance of the reaction between ethyl acrylate and iodobenzene in the presence (A) and absence 
(B) of ImS3b-6 after heating at 80 °C for 1 hour followed by cooling to room temperature (30 minutes). 

 

Figure S2. Duplicate DLS data of the reaction between ethyl acrylate and iodobenzene in the presence of 20 
mol% ImS3-b6 after 24 h. The reaction contents were diluted 10-fold in water immediately before data 
acquisition. 
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GC-MS DATA 

Figure S3. Chromatogram and mass fragmentation of 2-octyl-dodecylbromide. 

 
 
Figure S4. Chromatogram and mass fragmentation of 2-decyl-tetradecylbromide. 
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1H NMR and 13C SPECTRA 

Figure S5. 1H NMR (200 MHz) of 3-(1-(2-butyloctyl)-3-imidazolium)propanesulfonate – ImS3b-4 in CDCl3 using tetramethylsilane (TMS) as internal standard. 
δ (ppm) 9.55 (s, 1H), 7.67 (s, 1H), 7.16 (s, 1H), 4.59 (t, J = 7.0 Hz, 2H), 4.14 (d, J = 7.1 Hz, 2H), 2.85 (t, J = 6.8 Hz, 2H), 2.38 (d, J = 7.0 Hz, 2H), 1.84 (s, 1H), 
1.25 (s, 17H), 0.87 (t, J = 6.3 Hz, 6H). 
 

 

0.01.02.03.04.05.06.07.08.09.010.0
δ / ppm
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Figure S6. 1H NMR (200 MHz) of 3-(1-(2-hexyldecyl)-3-imidazolium)propanesulfonate – ImS3b-6 in CDCl3 using tetramethylsilane (TMS) as internal standard. 
δ (ppm) 9.62 (s, 1H), 7.63 (s, 1H), 7.13 (s, 1H), 4.60 (t, J = 6.9 Hz, 2H), 4.14 (d, J = 7.0 Hz, 2H), 2.85 (t, J = 6.8 Hz, 2H), 2.46 – 2.37 (m, 2H), 1.85 (s, 1H), 1.25 
(s, 24H), 0.88 (t, J = 6.7, 6.0 Hz, 6H). 
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Figure S7. 1H NMR (200 MHz) of 3-(1-(2-octyldodecyl)-3-imidazolium)propanesulfonate – ImS3b-8 in CDCl3 using tetramethylsilane (TMS) as internal 
standard. δ (ppm) 9.58 (s, 1H), 7.61 (s, 1H), 7.12 (s, 1H), 4.60 (t, J = 6.8 Hz, 2H), 4.14 (d, J = 6.9 Hz, 2H), 2.85 (t, J = 6.6 Hz, 2H), 2.52 – 2.28 (m, 2H), 1.78 (s, 
1H), 1.25 (s, 32H), 0.88 (t, J = 6.0 Hz, 6H). 
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Figure S8. 1H NMR (200 MHz) of 3-(1-(2-decyltetradecyl)-3-imidazolium)propanesulfonate – ImS3b-10 in CDCl3 using tetramethylsilane (TMS) as internal 
standard. δ (ppm) 9.58 (s, 1H), 7.62 (s, 1H), 7.12 (s, 1H), 4.59 (t, J = 6.4 Hz, 2H), 4.13 (d, J = 7.0 Hz, 2H), 2.85 (t, J = 6.7 Hz, 2H), 2.50 – 2.32 (m, 2H), 1.85 (s, 
1H), 1.25 (s, 40H), 0.86 (t, J = 6.6 Hz, 6H). 
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Figure S9. 13C NMR (100 MHz) of 3-(1-(2-butyloctyl)-3-imidazolium)propanesulfonate – ImS3b-4 in CDCl3 using tetramethylsilane (TMS) as internal standard. 
δ (ppm) 137.50; 123.13; 121.83; 53.79; 48.51; 47.45; 38.72; 31.67; 30.82; 30.39; 29.42; 28.19; 26.65; 26.13; 22.78; 14.04; 13.94. 
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Figure S10. 13C NMR (100 MHz) of 3-(1-(2-hexyldecyl)-3-imidazolium)propanesulfonate – ImS3b-6 in CDCl3 using tetramethylsilane (TMS) as internal 
standard. δ (ppm) 137.50; 123.25; 121.72; 53.80; 48.50; 38.72; 31.80; 31.64; 30.75; 29.74; 29.43; 29.39; 29.21; 26.73; 26.13; 26.06; 22.16; 22.54; 14.05; 14.02. 
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Figure S11. 13C NMR (100 MHz) of 3-(1-(2-octyldodecyl)-3-imidazolium)propanesulfonate – ImS3b-8 in CDCl3 using tetramethylsilane (TMS) as internal 
standard. δ (ppm) 137.55; 123.25; 121.66; 53.82; 48.51; 47.48; 38.72; 31.86; 31.81; 30.74; 29.75; 29.57; 29.50; 29.44; 29.29; 29.22; 26.74; 26.13; 22.63; 14.06. 
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Figure S12. 13C NMR (100 MHz) of 3-(1-(2-decyltetradecyl)-3-imidazolium)propanesulfonate – ImS3b-10 in CDCl3 using tetramethylsilane (TMS) as internal 
standard. δ (ppm) 137.60; 123.33; 121.62; 53.80; 48.51; 47.51; 38.71; 31.87; 30.73; 29.76; 29.61; 29.57; 29.50; 29.31; 26.87; 26.13; 22.63; 14.06. 
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Figure S13.1H NMR (200 MHz) of methyl cinnamate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.70 (d, J = 16.0 Hz, 1H), 7.53 (dd, 
J = 6.5, 3.1 Hz, 2H), 7.44 – 7.32 (m, 3H), 6.44 (d, J = 16.0 Hz, 1H), 3.81 (s, 3H). The peaks at 1.50 and 3.23 ppm are from triethylammonium iodide. 
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Figure S14. 1H NMR (200 MHz) of ethyl cinnamate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.69 (d, J = 16.0 Hz, 1H), 7.60 –7.47 
(m, 2H), 7.46 – 7.31 (m, 3H), 6.44 (d, J = 16.0 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). The peaks at 1.50 and 3.23 ppm are from 
triethylammonium iodide. 
 

 
 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0
δ / ppm



 

S17 
 

Figure S15. 1H NMR (200 MHz) of tert-butyl cinnamate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.59 (d, J = 16.1 Hz, 2H), 7.53–
7.43 (m, 4H), 7.43–7.30 (m, 6H), 6.37 (d, J = 16.0 Hz, 2H), 1.54 (s, 9H). The peaks at 1.50 and 3.23 ppm are from triethylammonium iodide. 
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Figure S16. 1H NMR (200 MHz) of ethyl-3-(4-methoxyphenyl)acrylate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.64 (d, J = 16.0 
Hz, 1H),7.48 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 1.33 (t, J = 7.1Hz, 3H). The peaks at 
1.50 and 3.23 ppm are from triethylammonium iodide. The peaks at 3.76, 6.67 and 7.54 ppm are from 4-iodoanisole. 
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Figure S17. 1H NMR (200 MHz) of ethyl-3-(4-acetylphenyl)acrylate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.97 (d, J = 8.7 Hz, 
2H), 7.70 (d, J = 16.1 Hz, 1H), 7.61 (d, J = 8.7 Hz, 2H), 6.56 (d, J = 16.1 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 2.62 (s, 3H),1.35 (t, J = 7.1 Hz, 3H).  
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Figure S18. 1H NMR (200 MHz) of ethyl-3-(4-nitrophenyl)acrylate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 8.25 (d, J = 8.7 Hz, 
2H), 7.71 (d, J = 16.1 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H), 6.56 (d, J = 16.1 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H). 
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Figure S19. 1H NMR (200 MHz) of ethyl-3-(2-methylphenyl)acrylate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.97 (d, J = 15.9 Hz, 
1H), 7.54 (d, J = 7.0 Hz, 1H), 7.22 (d, J = 5.3 Hz, 3H), 6.36 (d, J = 15.9 Hz, 1H), 4.27 (dd, J = 14.2, 7.1 Hz, 2H), 2.44 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H). 
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Figure S20. 1H NMR of ethyl cinnamate in CDCl3 (4-fold reaction scale) using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.69 (d, J = 16.0 Hz, 1H), 
7.60 –7.47 (m, 2H), 7.46 – 7.31 (m, 3H), 6.44 (d, J = 16.0 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H).   
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Figure S21. 13C NMR (100 MHz) of methyl cinnamate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 167.42; 144.88; 134.40; 130.30; 
128.89; 128.07; 117.82; 51.60. 
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Figure S22. 13C NMR (100 MHz) of ethyl cinnamate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 167.07; 144.64; 134.47; 130.23; 
128.88; 128.06; 118.27; 60.54; 14.32. 
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Figure S23. 13C NMR (100 MHz) of tert-butyl cinnamate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 166.33; 143.54; 134.69; 129.95; 
128.81; 127.95; 120.21; 80.50; 28.21. 
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Figure S24. 13C NMR (100 MHz) of ethyl-3-(4-methoxyphenyl)acrylate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 167.33; 161.34; 
144.24; 129.68; 115.77; 114.31; 60.31; 55.35; 14.35. 
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Figure S25. 13C NMR (100 MHz) of ethyl-3-(4-acetylphenyl)acrylate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 197.31; 166.48; 
142.99; 138.80; 137.97; 128.85; 128.11; 120.83; 60.76; 26.67; 14.29. 
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Figure S26. 13C NMR (100 MHz) of ethyl-3-(4-nitrophenyl)acrylate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 166.02; 148.48; 
141.60; 140.59; 128.61; 124.17; 122.60; 61.01; 14.25. 
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Figure S27. 13C NMR (100 MHz) of ethyl-3-(2-methylphenyl)acrylate in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 167.07; 142.29; 
137.62; 133.46; 130.77; 129.95; 126.41; 126.32; 119.33; 60.48; 19.78; 14.34. 
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Figure S28. 1H NMR (200MHz) of 4-methoxybiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.59 – 7.54 (m, 2H), 7.41 (t, J = 
7.3 Hz, 3H), 6.97 (d, J = 8.7 Hz, 2H), 3.84 (s, 3H). The peaks at 3.76, 6.67 and 7.54 ppm are from 4-iodoanisole. 
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Figure S29. 1H NMR (200MHz) of 4-acetylbiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 8.03 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 
8.5 Hz, 2H), 7.63 (d, J = 7.8 Hz, 2H), 7.53 – 7.37 (m, 3H), 2.64 (s, 3H). 
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Figure S30. 1H NMR (200MHz) of 4-hydroxybiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.72 – 7.17 (m, 7H), 6.90 (d, J = 
8.5 Hz, 2H), 5.00 (s, 1H). 
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Figure S31 1H NMR (200MHz) of 4-aminobiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 7.55 (dd, J = 7.2, 5.7 Hz, 2H), 7.40 
(dd, J = 11.6, 4.9 Hz, 5H), 7.32 – 7.17 (m, 2H), 6.80 – 6.70 (m, 2H), 3.68 (s, 1H). 
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Figure S32. 1H NMR (200MHz) of 2-methylbiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ 7.31 (ddd, J = 15.8, 7.5, 4.5 Hz, 9H), 2.27 
(s, 3H). 
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Figure S33. 1H NMR of biphenyl in CDCl3 (10-fold reaction scale). δ (ppm)7.59 (d, J = 6.9 Hz, 4H), 7.44 (t, J = 7.2 Hz, 4H), 7.38–7.27 (m, 2H). The peaks at 
4.64 and 8.25 ppm are from monomer and dimer from the phenylboronic acid (starting material), respectively. 
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Figure S34. 13C NMR (100MHz) of 4-methoxybiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 159.19; 140.86; 133.82; 128.76; 
128.19; 126.77; 126.69; 114.25; 55.36. 
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Figure S35. 13C NMR (100MHz) of 4-acetylbiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 145.79; 139.87; 135.87; 128.98; 
128.94; 128.26; 127.28; 127.23; 26.66. 
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Figure S36. 13C NMR (100MHz) of 4-hydroxybiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 155.10; 140.77; 134.04; 128.74; 
128.41; 126.73; 115.66. 
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Figure S37. 13C NMR (100MHz) of 2-methylbiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 141.99; 135.70; 135.38; 132.74; 
130.34; 129.84; 129.23; 128.10; 128.04; 127.29; 126.80; 125.80. 
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Figure S38. 13C NMR (200MHz) of 4-aminobiphenyl in CDCl3 using tetramethylsilane (TMS) as internal standard. δ (ppm) 145.91; 141.22; 131.60; 128.73; 
128.05; 127.22; 126.45; 126.31; 115.46. 
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Figure S39. 1H NMR of biphenyl in CDCl3 (10-fold reaction scale). δ (ppm) 135.65; 133.46; 132.71; 128.00. 
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Figure S40. Calibration curves from (a) ethyl cinnamate, (b) iodobenzene and (c) biphenyl. 
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Figure S41. Chromatogram and mass fragmentogram of iodobenzene (tr = 7.00 min) and ethyl cinnamate (tr 
= 9.95 min). Decane (tr = 6.50 min) was used as internal standard. 
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Figure S42. Chromatogram and mass fragmentogram of iodobenzene (tr = 7.425 min) and biphenyl (tr = 9.562 
min). Decane (tr= 6.99 min) was used as internal standard. 
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Figure S43. LC/MS-QTOF mass spectra (positive mode) of 3-(1-(2-butyloctyl)-3-imidazolium)propanesulfonate – ImS3b-4 in methanol containing 0.1 % 
formic acid. 
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Figure S44.  LC/MS-QTOF mass spectra (positive mode) of 3-(1-(2-hecyldecyl)-3-imidazolium)propanesulfonate – ImS3b-6 in methanol containing 0.1 % 
formic acid. 
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Figure S45 LC/MS-QTOF mass spectra (positive mode) of 3-(1-(2-octyldodecyl)-3-imidazolium)propanesulfonate – ImS3b-8 in methanol containing 0.1 % 
formic acid. 
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Figure S46.  LC/MS-QTOF mass spectra (negative mode) of 3-(1-(2-decyltetradecyl)-3-imidazolium)propanesulfonate – ImS3b-10 in methanol containing 0.1 
% ammonium formate. 
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