Supplementary Information (SI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplemental Information

Rapid detection and visible light driven photocatalytic degradation of chloramphenicol

in aqueous medium usingCoAl₂O₄/rGO nanocomposite

Kamalpreet Kaur^{a,#}, Tarab Akhtar^{a,#}, Gagandeep Singh^{b,#}, Navneet Kaur^{c,*}, Narinder Singh^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India

^bChitkara College of Pharmacy, Chitkara University, Punjab 140401, India

^cDepartment of Chemistry, Punjab University, Chandigarh 160014, India

The authors contributed equally in this work Corresponding author's E-mail: nsingh@iitrpr.ac.in; navneetkaur@pu.ac.in

S.No.	Title				
Figure S1	Linear calibration plot of CV showing the linear change in peak current of CoAl ₂ O ₄ -				
	rGO/GCE respectively with increasing concentration of CAP.				
Figure S2	Plot of square root scan rate vs current with error bars				
Figure S3	Plot of scan rate vs current				
Figure S4	Linear regression plot between log current versus log of scan rate.				
Figure S5	Linear calibration plot of LSV showing the linear change in peak current with a concentration of CAP.				
Figure S6	Linear calibration plot of DPV showing the linear change in peak current with a concentration of CAP.				
Figure S7	Linear calibration plot of the amperometry study after successive addition of CAP.				
Figure S8	(A) EIS measurements for various concentrations of CAP at $rGO-CoAl_2O_4/GCE$. (B) The calibration curve for the determination of CAP.				
Figure S9	Plot of pH vs. current in 0.1 M PBS containing 120 μ M solution of CAP at the CoAl ₂ O ₄ -rGO.				
Figure S10	Correlation of pH with Ep.				
Figure S11	Bar graph showing the stability of response of CoAl ₂ O ₄ -rGO for CAP detection with number of days.				
Figure S12	Reduction peak currents of 2.5, 5, 7.5 and 10 mg CoAl ₂ O ₄ -rGO/GCE of 120 μ M CAP in 0.1 M PBS pH 7.00 at scan rate 100 mV s ⁻¹				
Figure S13	Bar graph showing the stability of response of CoAl ₂ O ₄ -rGO for CAP detection with number of different samples.				
Figure S14	EDAX analysis of rGO.				
Figure S15	EDAX analysis of CoAl ₂ O ₄ .				
Figure S16	EDAX analysis of rGO@CoAl ₂ O ₄ .				
Figure S17	(A) The particle size distribution histogram of $CoAl_2O_4$ nanoparticles, (B) DLS histogram of $CoAl_2O_4$ nanoparticles				
Figure S18	(A) Absorption spectra of CAP photocatalytic degradation under the influence of various catalysts, (B) Photocatalytic degradation efficiencies of various catalysts and (C) absorption capacities of various catalysts.				
Figure S19	Reactions involving degradation of CAP using rGO@CoAl ₂ O ₄ .				
Figure S20	Degradation products of CAP using CoAl ₂ O ₄ /rGO nanocomposite.				

Figure S21	Schematic illustration of CAP real sample analysis.
Table 1	Real sample analysis of CAP in water
Table 2.	Comparison with literature reports for CAP detection

Figure S1. Linear calibration plot of CV showing the linear change in peak current of CoAl₂O₄-rGO/GCE respectively with increasing concentration of CAP.

Figure S2. Plot of square root scan rate vs current with error bars

Figure S3. Plot of scan rate vs current

Figure S4. Linear regression plot between log current versus log of scan rate.

Figure S5. Linear calibration plot of LSV showing the linear change in peak current with a concentration of CAP.

Figure S6. Linear calibration plot of DPV showing the linear change in peak current with a concentration of CAP.

Figure S7. Linear calibration plot of the amperometry study after successive addition of CAP.

Figure S8. (A) EIS measurements for various concentrations of CAP at rGO-CoAl₂O₄/GCE. (B) The calibration curve for the determination of CAP.

Figure S9. Plot of pH vs. current in 0.1 M PBS containing 120 µM solution of CAP at the CoAl₂O₄-rGO.

Figure S10. Correlation of pH with Ep.

Figure S11. Bar graph showing the stability of response of CoAl₂O₄-rGO for CAP detection with number of days.

Figure S12. Reduction peak currents of 2.5, 5, 7.5 and 10 mg CoAl₂O₄-rGO/GCE of 120 μ M CAP in 0.1 M PBS pH 7.00 at scan rate 100 mV s⁻¹

Figure S13. Bar graph showing the stability of response of CoAl₂O₄-rGO for CAP detection with number of different samples.

Figure S14. EDAX analysis of rGO.

Figure S15. EDAX analysis of CoAl₂O₄.

Figure S16. EDAX analysis of rGO@CoAl₂O₄.

Figure S17. (A) The particle size distribution histogram of CoAl₂O₄ nanoparticles, (B) DLS histogram of CoAl₂O₄ nanoparticles

Figure S18. (A) Absorption spectra of CAP photocatalytic degradation under the influence of various catalysts, (B) Photocatalytic degradation efficiencies of various catalysts and (C) absorption capacities of various catalysts.

$$rGO@CoAl_2O_4 + hv \longrightarrow CoAl_2O_4 (h^+ + e^-)$$

$$CoAl_2O_4 (e^-) \longrightarrow rGO (e^-)$$

$$e^- + O_2 \longrightarrow O_2^{--}$$

$$h^+ + H_2O \longrightarrow HO^- + H^+$$

$$OH^- + O_2^{--} + CAP \longrightarrow Degradation products$$

Figure S19. Reactions involving degradation of CAP using rGO@CoAl₂O₄.

Figure S21: Schematic illustration of CAP real sample analysis.

Real sample analysis of CAP in water

Table 1.

Sample	Added/10 ⁻⁶ mol/L	Found/10 ⁻⁶ mol/L	RSD (%)	Degradation (%)
River water	10.00	9.18	0.83	91.80
	25.00	24.19	2.07	96.76
Tan matan	10.00	0.90	0.75	00 00
I ap water	10.00	9.89	0.75	98.90
	50.00	50.55	2.08	101.10
Pharmaceutical	10.00	10.36	0.43	103.6
Sewage wastewater				
	25.0	25.19	1.05	100.76

Table 2.

Comparison with literature reports for CAP detection

S.No.	Probe	Detection method	Application	Detection Limit	Linear range	References
1.	Mn ₃ O ₄ nanoparticle s for detection of chloramphenicol	Electrochemical sensor	Milk samples	0.008 μΜ	0.007-0.013 μM	1
2.	GCE modified with CS-MWCNTs electro- polymerization for detection of chloramphenicol	Electrochemical sensor	Milk samples	3.3x10 ⁻² μM	0.1-1000 μM	2
3.	MIP/Uio- 66@CDs/GCE for detection of chloramphenicol	Electrochemical Impedance Spectroscopy (EIS)	Water samples	61×10 ⁻⁹ µМ	40×10 ⁻⁹ μM -61×10 ⁻⁹ μM	3
4.	CdS0.75Se0.25@ol igopeptide quantum dots for detection of chloramphenicol	Fluorescent spectroscopy	Milk samples	0.89 μg/L	3.13 to 500 μg/L	4
5.	MIP-functionalized rGO for adsorption and detection of chloramphenicol	Electrochemical detection	Honey samples	0.204 µM	0.1 μM – 1.2 μM	5

6.	Sn/rGO/SPCE (Screen printed electrode) for detection of chloramphenicol	Electrochemical detection	Milk, honey samples	0.2 μM	0.5–30 μM	6
7.	Ag nanoparticles for detection of chloramphenicol	Surface-enhanced Raman scattering (SERS)	Food samples	10-5 μg/mL	102 to10 ⁻⁵ μg/mL	7
8.	AuNPs/MoS ₂ /TiO ₂ for detection of Chloramphenicol	Photochemical aptasensor	Milk samples	0.5 pM	0.3-0.5 pM	8
9.	CoAl ₂ O ₄ -rGO for removal as well as detection of chloramphenicol	Electrochemical detection	Water samples	13.5 nM	3.4-13.5 nM	This work

References

1. R. Nehru, S. Gnanakrishnan, C.-W., Chen, C.-D, Dong, ACS Appl. Nano Mater., 2023, 6, 1235–1249.

2. L. Geng, J. Huang, H. Zhai, Z. Shen, J. Han, Y. Yu, H. Fang, F. Li, X. Sun, Y. Guo, *Microchemical Journal*, 2022, **182**, 107887.

3. L. Bu, X. Chen, Q. Song, D. Jiang, X. Shan, W, Wang, Z. Chen, *Microchemical Journal*, 2022, **179**, 107459.

4. X. Xu, Y. Yang, H. Jin, B. Pang, R. Yang, L.Yan, C. Jiang, D. Shao, J. Shi, *ACS Sustainable Chem. Eng.*, 2020, **8**, 6806–6814.

5. T. N. T. Nguyen, N. Thi Pham, D.-H. Ngo, S. Kumar, X. T. Cao, ACS Omega, 2023, 8, 25385–25391.

6. S. Bunnasit, K. Thamsirianunt, R. Rakthabut, K. Jeamjumnunja, C. Prasittichai, W. Siriwatcharapiboon, *ACS Appl. Nano Mater.*, 2024, **7**, 267–278.

7. H. Li, W. Geng, M. M. Hassan, M. Zuo, W. Wei, X. Wu, Q. Ouyang, Q. Chen, Q. Food Control, 2021, 128, 108186.

8. C. Zhao, T. Jing, M. Dong, D. Pan, J, Guo, J. Tian, M. Wu, N. Naik, M. Huang, Z. Guo, *Langmuir*, 2022, *38*, 2276–2286.