Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information

Construction of 2D@0D InVO4@MnWO4 S-scheme for Efficient

Photocatalytic Reduction CO₂ to CO

Wenzhuo Xiang ^a, Guoyu Xu ^a, Lujiang Xiao ^a, Zizhong Zhang ^a, Tao Ji ^b, Wenyue Su ^{a, *}

^a State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry,

Fuzhou University, Fuzhou 350116, China.

^b College of Civil Engineering, Fuzhou University, Fuzhou 350116, China.

* Corresponding author. E-mail: suweny@fzu.edu.cn.

Contents list

Experimental Section

Fig. S1 XRD patterns MnWO₄, InVO₄, and a% InVO₄@MnWO₄ composites.

Fig. S2 XPS spectra of samples: (a) survey spectra, (b) In 3d, (c) Mn 2p

Fig. S3 XRD patterns of InVO₄@MnWO₄ composite before and after activity cycling test.

Fig. S4 The AQE wavelength-dependence of $InVO_4@MnWO_4$ for the photocatalytic CO_2 reduction.

Fig. S5 (a) UV-vis DRS spectra of samples, (b) Tauc plots of MnWO₄ and InVO₄.

Fig. S6 TEM images of $InVO_4@MnWO_4$ photodeposited with Pt (a, b) nanoparticles and PbO₂ (c, d) nanoparticles.

Fig. S7 SEM images of InVO₄@MnWO₄ (a) before reaction, (b) after reaction.

Fig. S8 XPS survey spectrum of (a) $InVO_4@MnWO_4$ before and after cycling tests; the high resolution XPS spectra of (b) V 2p, (c) W 4f, (d) O 1s, (e) In 3d and (f) Mn 2p.

 Table S1.
 The W content in a% InVO4@MnWO4 composites.

Table S2. Photocatalytic CO_2 reduction performance data of $InVO_4$ -based photocatalysts.

Table S3. The physical adsorption capacity of samples.

Table S4. Exponential function fitted parameters of the TRPL decay spectra for $MnWO_4$, $InVO_4$ and $InVO_4@MnWO_4$ composite.

Reference

Experimental Section

Characterization

Powder X-ray diffraction (XRD) patterns are obtained using a Bruker D8 Advance diffractometer with Cu-Ka radiation (λ = 0.15406 nm) and a 0.02° step size. UV-vis diffuse reflectance spectra (DRS) are measured on a Varian Cary 5000 spectrophotometer, using BaSO4 as a reference. A Hitachi SU 8010 FE-SEM observes sample morphology and size. Samples for SEM are ultrasonically dispersed in deionized water, dropped onto a conductive silicon wafer, dried, and coated with gold to enhance conductivity. Transmission electron microscopy (TEM) and highresolution TEM (HRTEM) images are captured with a FEI TECNAI G2F20 instrument. TEM samples are prepared by dispersing in ethanol, and dropping 3-5 droplets of the supernatant onto a TEM microgrid membrane to dry. SEM and TEM are conducted at 5 kV and 200 kV, respectively. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) are performed using a Thermo ESCALAB-250 spectrometer, calibrated with 284.8 eV contaminated carbon as the standard. Low temperature N₂ and CO₂ adsorption isotherms are measured using Micromeritics ASAP 2020. Room temperature photoluminescence (PL) spectra and transient PL lifetime are measured on an Edinburgh Instrument FLS-980 spectrophotometer at 480 and 357 nm excitation wavelengths. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) is performed on an Avio 200 instrument. Electron paramagnetic resonance (EPR) data are collected using a Bruker A300 spectrometer. Work functions (WF) are determined with a Kelvin probe (SKP5050, KP Technology Ltd.) using an Au-coated silicon cantilever (WF_{Au} = 5.1 eV).

The transmission path of photogenerated charges in the prepared sample are explored by photoinduced redox probe experiment. Typically, using methanol and NaIO₃ as hole and electrons acrificial reagents, 1 wt.% Pt and 5 wt.% PbO₂ are photodeposited on $InVO_4@MnWO_4$ with H_2PtCl_6 and $Pb(NO_3)_2$ as precursors, respectively.

Electrochemical measurement

PEC measurement is performed using a PAR VMP3 workstation. To prepare PEC samples, 10 mg of powder is dispersed in 450 μ L DMF and 50 μ L Nafion with ultrasonic dispersion. Then, 20 μ L of this suspension is dropped onto a 0.28 cm² area on an FTO sheet and left to dry. The FTO with the sample acts as the working electrode, with Pt wire and Ag/AgCl serving as the counter and reference electrodes, respectively. Electrochemical impedance spectroscopy (EIS) is measured using a CHI-660E workstation over a frequency range of 0.1 to 100,000 Hz in a 0.5 M KCl solution containing 0.01 M K₃[Fe(CN)₆]/K₄[Fe(CN)₆] (1:1). linear sweep voltammetry (LSV) curves for OER are obtained in 0.5 M KOH (pH = 13.69) at a scan rate of 10 mV s⁻¹. The photocurrent measurement is recorded in 0.2 M Na₂SO₄ (pH = 6.8) using a 300 W Xe lamp with a UV-CUT filter ($\lambda \ge 400$ nm).

Photocatalytic H₂O oxidation half-reaction Test:

The photocatalytic H₂O oxidation half-reaction is carried out in a Pyrex topirradiation reaction vessel connected to a glass closed gas system by dispersing 50 mg of photocatalysts power into 100 mL ultrapure water contained 0.01 M AgNO₃ as the sacrificial agent and 0.2 g La₂O₃ as a pH buffer agent under the irradiation of a 300 W Xe lamp with an ultraviolet cutoff filter (λ > 400 nm). The reactor is sealed and evacuated several times to eliminate the air before irradiation.

Photocatalytic CO₂ reduction half-reaction Test:

The photocatalytic CO₂ reduction half-reaction is carried out in a cylindrical glass reactor (volume, ~100 mL) by dispersing 10 mg of photocatalysts power into 10 mL acetonitrile contained 0.5 mL triethanolamine (TEOA) as sacrificial agent under the irradiation of a 300 W Xe lamp with an ultraviolet cutoff filter (λ > 400 nm). The reaction vessel is sealed and filled with CO₂ before irradiation.

Fig. S1 XRD patterns MnWO₄, InVO₄, and a% InVO₄@MnWO₄ composites.

Fig. S2 XPS spectra of samples: (a) survey spectra, (b) In 3d, (c) Mn 2p.

Fig. S3 XRD patterns of InVO₄@MnWO₄ composite before and after activity cycling test.

Fig. S4 The AQE wavelength-dependence of $InVO_4@MnWO_4$ for the photocatalytic CO_2 reduction.

Fig. S5 (a) UV-vis DRS spectra of samples, (b) Tauc plots of $MnWO_4$ and $InVO_4.$

Fig. S6 TEM images of $InVO_4@MnWO_4$ photodeposited with Pt (a, b) nanoparticles and PbO₂ (c, d) nanoparticles.

Fig. S7 SEM images of InVO4@MnWO4 (a) before reaction, (b) after reaction.

Fig. S8 XPS survey spectrum of (a) $InVO_4@MnWO_4$ before and after cycling tests; the high resolution XPS spectra of (b) V 2p, (c) W 4f, (d) O 1s, (e) In 3d and (f) Mn 2p.

Table S1. The W content in a% InVO₄@MnWO₄ composites.

Samples —	W content (wt %)			
	Added value	Measured value		
10%InVO ₄ @MnWO ₄	6.07	5.14		
20%InVO₄@MnWO₄	12.14	11.42		
30%InVO ₄ @MnWO ₄	18.21	17.63		
40%InVO₄@MnWO₄	24.28	23.87		
50%InVO₄@MnWO₄	30.35	29.94		

Table S2. Photocatalytic CO₂ reduction performance data of InVO₄-based photocatalysts.

Photocatalyst	CH ₄ evolution (μmol g ⁻¹ h ⁻¹)	CO evolution (µmol g ⁻¹ h ⁻¹)	AQE (λ=400nm)	Reference
InVO ₄ @MnWO ₄	-	6.20	0.0065%	This work
Bi ₂ WO ₆ /InVO ₄	1.13	17.97	-	1
$InVO_4/\beta$ -AgVO ₃	1.62	12.61	0.49%	2
p-C ₃ N ₄ /InVO ₄	1.88	14.05	-	3
$InVO_4/Ti_3C_2T_x$	0.09	13.83	0.0041%	4
InVO ₄ /La ₂ Ti ₂ O ₇	-	11.7	0.002%	5

Table S3. The physical adsorption capacity of samples.

Samples	S _{BET} (m²/g)	Q _{CO2} (cm ³ /g)	Q _{CO2} /S _{BET} (cm ³ /m ²)
InVO ₄	15.6	4.6	0.29
MnWO ₄	20.3	6.5	0.32
InVO ₄ @MnWO ₄	16.9	5.6	0.33

Table S4. Exponential function fitted parameters of the TRPL decay spectra for $MnWO_4$, $InVO_4$ and $InVO_4@MnWO_4$ composite.

Samples –	τ ₁	τ ₁		τ ₂	
	value (ns)	A ₁ %	value (ns)	A ₂ %	value (ns)
InVO ₄	0.09	98.12	3.02	1.88	0.13
MnWO ₄	0.12	99.23	3.24	0.77	0.16
InVO ₄ @MnWO ₄	0.26	97.78	3.38	2.22	0.36

For TRPL, the decay curves can be well fitted by the following biexponential equations:

$$I_{(t)} = I_0 + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$$

The average carrier life of the each sample can be calculated by the following formula ⁶:

$$\tau_{a} = (A_{1}\tau_{1}^{2} + A_{2}\tau_{2}^{2})/(A_{1}\tau_{1} + A_{2}\tau^{2})$$

where the I_0 represents the baseline correction value, A_1 and A_2 are the pre-exponential factors, and τ_1 , τ_2 and τ represent the lifetime (ns) in different processes and average lifetime.

Reference

- 1. J. Li, W. Feng, Z. Xiu, X. Han, Direct Z-scheme charge transfer of Bi₂WO₆/InVO₄ interface for efficient photocatalytic CO₂ reduction, Chem. Eng. J., 2022, 446, 137129.
- J. Yang, J. Hao, S. Xu, Q. Wang, J. Dai, A. Zhang, X. Pang, InVO₄/β-AgVO₃ Nanocompositeas a Direct Z-Scheme Photocatalyst toward Efficient and Selective Visible-Light-Driven CO₂ Reduction, ACS Appl. Mater. Interfaces, 2019, 11, 32025–32037.
- 3. L. Wang, D. Chen, S. Miao, F. Chen, C. Guo, P. Ye, J. Ning, Y. Zhong, Y. Hu, Nitricacid-assisted growth of $InVO_4$ nanobelts on protonated ultrathin C_3N_4 nanosheets as an S-scheme photocatalyst with tunable oxygen vacancies for boosting CO_2 conversion, Chem. Eng. J., 2022, 434, 133867.
- L. Li, Y. Yang, L. Yang, X. Wang, Y. Zhou, Z. Zou, 3D Hydrangea-like InVO₄/Ti₃C₂T_x Hierarchical Heterosystem Collaborating with 2D/2D Interface Interaction for Enhanced Photocatalytic CO2 Reduction, ChemNanoMat, 2021, 7, 815–823.
- L. Xiao, L. Lin, J. Song, Z. Zhang, X. Wang, W. Su, Construction of a direct Z-scheme InVO₄/La₂Ti₂O₇ photocatalyst toward efficient and selective CO₂ reduction to CO, J. Alloys Compd., 2023, 935, 168086.
- L. Yuan, Y. Li, Z. Tang, J. Gong, Y. Xu, Defect-Promoted Visible Light-Driven C-C Coupling Reactions Pairing with CO₂ Reduction, J. Catal., 2020, 390, 244-250.