Supplementary Information

Perylene Tetracarboxylate Dye Based Colorimetric and Fluorometric Sensor for ppb-Level Fluoride Detection in Water

Bikash Chandra Musahary,^a Debajit Bora^a, Chayanika Goswami^a, Rituraj Das^b and Sanjeev Pran Mahanta *^a

^aDepartment of Chemical Sciences, Tezpur University, Tezpur, Assam 784028, India.

^bDepartment of Chemistry, Morigaon College, Morigaon, Assam 782105, India.

*Corresponding author, E-mail:-<u>spm@tezu.ernet.in</u>, <u>samahanta@gmail.com</u>

Table of contents

Figure S1	FT-IR spectrum of K_4PTC and $Al_4(PTC)_3$.	4
Figure S2	Powder X-ray diffraction pattern of K_4PTC MOF and comparison with	5
	the PXRD of the reported one (CCDC Number: 1509483)	
Table S1	Comparison of the PXRD 2 Θ values of the peaks of the K ₄ PTC	5
	synthesized with the PXRD simulated from the cif file of the reported	
	data (Ref: Ref: J. M. Seco, E. San Sebastián, J. Cepeda, B. Biel, A.	
	Salinas-Castillo, B. Fernández, D. P. Morales, M. Bobinger, S. Gómez-	
	Ruiz, F. C. Loghin, A. Rivadeneyra, A. Rodríguez-Diéguez, Sci. Rep.,	
	2018, 8, 14414).	
Figure S3	a) UV–Vis absorption spectra of K_4PTC [1.6 × 10 ⁻⁴ M] solution in	6
	water upon addition of 5 equivalent of various metal ions $[1 \times 10^{-2} \text{ M}]$	
	in water (BaCl ₂ , CoCl ₂ , CuCl ₂ , FeCl ₂ , MnCl ₂ , NiCl ₂ , VCl ₃ , CaCl ₂ , FeCl ₃ ,	
	ZnCl ₂ , AlCl ₃ , MgCl ₂ , NaCl), b) Bar representation of the change in	
	absorbance at 480 nm, where $C = K_4 PTC$.	
Figure S4	a) Emission spectra of K ₄ PTC [1.6×10^{-5} M] in water upon addition of	6
	5 equivalent of various metal ions $[1 \times 10^{-3} \text{ M}]$ in water (BaCl ₂ , CoCl ₂ ,	
	CuCl ₂ , FeCl ₂ , MnCl ₂ , NiCl ₂ , VCl ₃ , CaCl ₂ , FeCl ₃ , ZnCl ₂ , AlCl ₃ , MgCl ₂ ,	
	NaCl), b) Bar representation of the change in intensity of the emission at	
	510 nm, where $C = K_4 PTC$	
Figure S5	Change in colour of K_4PTC solution in water upon addition of 5	7
	equivalents of various metal ions under normal light and UV lamp.	
Figure S6	a) UV–Vis absorption spectra of K_4PTC [1.6 × 10 ⁻⁴ M] solution in	7
	water upon addition of different anions $[1 \times 10^{-2} \text{ M}]$ in presence of Al ³⁺	
	$[1 \times 10^{-2} \text{ M}]$ ion b) Bar representation of the change in absorbance at	
	465 nm, where $C = K_4 PTC$.	
Figure S7	a) Emission spectra of K_4PTC [1.6 \times 10 ⁻⁵ M] upon addition of various	8
	anions [1 × 10 ⁻³ M], in presence of Al ³⁺ [1 × 10 ⁻³ M], (λ_{exc} = 465 nm);	
	b) Bar representation, where $C = K_4 PTC$.	
Figure S8	Change in colour of the K ₄ PTC solution in water upon addition of	8
	different anions in presence of Al ³⁺ ion in normal light and upon UV	
	illumination.	

Figure S9	FT-IR spectrum of K_4 PTC upon addition of NaF in presence of Al ³⁺ .	9					
Figure S10	a) UV-Vis absorption spectra of K_4 PTC solution in water upon addition	9					
	of increasing concentration of Al ³⁺ (aq) ion; b) Change in absorbance of						
	the peak at 465 nm upon incremental addition of Al ³⁺ ion.						
Figure S11	a) Emission spectra of K ₄ PTC solution in water upon addition of	10					
	increasing concentration of Al ³⁺ (aq); b) Change in emission intensity of						
	the peak at 510 nm upon incremental addition of Al^{3+} ion.						
Figure S12	a) UV-Vis spectra of $(K_4PTC + Al^{3+})$ solution in water upon addition of	10					
	increasing concentration of NaF (0-8 ppm) in water; b) Change in						
	absorbance of the peak at 465 nm upon incremental addition of F ⁻ ion						
Figure S13	a) Fluorescence spectra of $(K_4PTC + Al^{3+})$ solution in water upon	11					
	addition of increasing concentration of NaF (0-8 ppm) in water; b)						
	Change in emission intensity of the peak at 510 nm upon incremental						
	addition of F^- ion.						
Figure S14	Time Resolved Photoluminescence spectra of study of K ₄ PTC solution	11					
	in water and upon stepwise addition of A13+ and F-						
Table S2	Quantum yield and the recombination rate of the K_4 PTC solution upon	12					
Figure S15	addition of AI ³⁺ and F ² ion. (a) Stern-Volmer plot for quenching of the fluorescence of K_4PTC upon	12					
	addition of increasing concentration of Al^{3+} ; (b) Benesi Hildebrand plot						
	for the calculation of association constant for the association of Al^{3+} with						
	K_4 PTC in water (association constant =6 × 10 ⁴ M ⁻¹).						
Figure S16	Plausible reactions involved in the sensing process	13					
Figure S17	Concentration of fluoride ion in the water sample as per the calibration	13					
	curve obtained by following the methodology demonstrated in this work						
	a) UV-Vis spectroscopy; b) Fluorescence spectroscopy.						
Table S3	Comparison between the two spectroscopic methods of measuring the	14					
	concentration of F ⁻ ion in water sample with fluoride ion selective						
	electrode method.						
Figure S18	Left: Visualization of the methodology in cellulose paper strip,	15					
	colorimetric and fluorescence changes of K_4PTC upon addition of						
	aqueous solution of NaF and Al ³⁺ under normal light and UV-Vis light,						
	Right: RGB value of the colorimetric change.						
Table S4	Comparison with some of the reported methods	15					

Figure S1: FT-IR spectrum of a) K_4 PTC and b) isolated complex of Al³⁺ and PTC⁴⁻.

[Fig S1 a): The absorption bands at 1594 cm⁻¹ and 1352.5 cm⁻¹ are attributed to the asymmetric and symmetric vibrations, respectively, of COO⁻ in **K**₄**PTC**, b) The absorption peak at 1764.5 cm⁻¹ is indicative of asymmetric vibration of COO⁻ group of the isolated complex of Al³⁺ and PTC⁴⁻. The peaks at 1585 cm⁻¹ and 723 cm⁻¹ represent the stretching frequencies of C-O and Al-O bonds, respectively.]

Figure S2: Powder X-ray diffraction pattern of K4PTC MOF and comparison with the PXRD of the reported one (CCDC Number: 1509483).

K ₄ PTC	PXRD of K ₄ PTC MOF simulated from the reported			
(This work)	crystal data CCDC number: 1509483			
14.52°	14.52°			
15.51°	15.58°			
17.76°	17.96°			
26.17°	26.20°			
29.41°	28.32°			
30.23°	30.12°			

Table S1: Comparison of the PXRD 2 Θ values of the peaks of the K₄PTC synthesized with the PXRD simulated from the cif file of the reported data (Ref: Ref: J. M. Seco, E. San Sebastián, J. Cepeda, B. Biel, A. Salinas-Castillo, B. Fernández, D. P. Morales, M. Bobinger, S. Gómez-Ruiz, F. C. Loghin, A. Rivadeneyra, A. Rodríguez-Diéguez, Sci. Rep., 2018, 8, 14414).

Figure S3: a) UV–Vis absorption spectra of K_4PTC [1.6 × 10⁻⁴ M] solution in water upon addition of 5 equivalent of various metal ions [1 × 10⁻² M] in water (BaCl₂, CoCl₂, CuCl₂, FeCl₂, MnCl₂, NiCl₂, VCl₃, CaCl₂, FeCl₃, ZnCl₂, AlCl₃, MgCl₂, NaCl) (C: K_4PTC), b) Bar representation of the change in absorbance at 480 nm, where *Control, C*= K₄PTC..

Figure S4: a) Emission spectra of K_4PTC [1 × 10⁻³ M] in water upon addition of 5 equivalent of various metal ions [1 × 10⁻³ M] in water (BaCl₂, CoCl₂, CuCl₂, FeCl₂, MnCl₂, NiCl₂, VCl₃, CaCl₂, FeCl₃, ZnCl₂, AlCl₃, MgCl₂, NaCl) (C: K_4PTC), b) Bar representation of the change in intensity of the emission at 550 nm, where *Control*, *C*= K_4PTC .

Figure S5: Change in colour of K_4 PTC solution in water upon addition of 5 equivalents of various metal ions under normal light and UV lamp.

Figure S6: a) UV–Vis absorption spectra of K_4PTC [1 × 10⁻³ M] solution in water upon addition of different anions [1 × 10⁻² M] in presence of Al³⁺ [1 × 10⁻² M] ion (C: K_4PTC), b) Bar representation of the change in absorbance at 465 nm, where *Control, C* = K_4PTC .

Figure S7: a) Emission spectra of K_4PTC [1 × 10⁻³ M] upon addition of various anions [1 × 10⁻³ M], in presence of Al³⁺ [1 × 10⁻³ M], λ_{exc} = 465 nm) (C: K_4PTC); b) Bar representation of the change in intensity of the emission at 550 nm, where *Control*, *C* = K_4PTC .

Figure S8: Change in colour of the K_4 PTC solution in water upon addition of different anions in presence of Al³⁺ ion in normal light and UV lamp.

Figure S9: FT-IR spectrum of K_4 PTC upon addition of NaF in presence of Al³⁺. (The peak at 600 cm⁻¹ represents the F-Al-F stretching indicating the formation of AlF₃.)

Figure S10: a) UV-Vis absorption spectra of K_4 PTC solution in water upon addition of increasing concentration of Al³⁺ (aq) ion; b) Change in absorbance of the peak at 465 nm upon incremental addition of Al³⁺ ion.

Figure S11: a) Emission spectra of K₄PTC solution in water upon addition of increasing concentration of Al^{3+} (aq); b) Change in emission intensity of the peak at 510 nm upon incremental addition of Al^{3+} ion.

Figure S12: a) UV-Vis spectra of $(K_4PTC + Al^{3+})$ solution in water upon addition of increasing concentration of NaF (0-8 ppm) in water; b) Change in absorbance of the peak at 465 nm upon incremental addition of F⁻ ion

Figure S13: a) Fluorescence spectra of $(K_4PTC + Al^{3+})$ solution in water upon addition of increasing concentration of NaF (0-8 ppm) in water; b) Change in emission intensity of the peak at 510 nm upon incremental addition of F⁻ ion.

Figure S14: Time Resolved Photoluminescence study of K_4PTC solution in water and upon stepwise addition of Al³⁺ and F⁻.

Observed K₄PTC K₄PTC(aq) K₄PTC(aq)

(aq)	+ Al ³⁺ (aq)	+
		Al ³⁺ (aq)+NaF(aq)
81	9.2	74
5.20	5.42	5.31
$0.16 imes 10^9$	$0.16 imes 10^7$	0.14×10^{9}
8.7×10^{7}	$0.17 imes 10^9$	4.9×10^{7}
	(aq) 81 5.20 0.16×10^9 8.7×10^7	(aq) $+ Al^{3+}(aq)$ 819.25.205.42 0.16×10^9 0.16×10^7 8.7×10^7 0.17×10^9

Table S2: Quantum yield and the recombination rate of the K_4PTC solution upon addition of A1³⁺ and F⁻ ion.

Figure S15: (a) Stern-Volmer plot for quenching of the fluorescence of K_4PTC upon addition of increasing concentration of Al^{3+} ; (b) Benesi Hildebrand plot for the calculation of association constant for the association of Al^{3+} with K_4PTC in water (association constant =6 × 10⁴ M⁻¹).

$$PTC^{4-}(aq) \xrightarrow{AI^{3+}(aq)} PTC^{4-}@AI^{3+}(aq)$$

$$[AIF_{i}]^{(3-i)+} F^{-}(aq)$$

$$(aq)$$

Figure S16: Plausible reactions involved in the sensing process

Real life sample analysis:

The methodology was validated by quantifying the fluoride ion concentration in real samples collected from Dengaon village, located in the Karbi Anglong district of Assam, India.

For the UV-Vis analysis, 2.5 mL of a 1.6×10^{-4} M solution of K₄PTC was placed in a cuvette, and 70 µL of a 10×10^{-3} M AlCl₃ solution in an aqueous medium was added. Subsequently, 50 µL of each water sample was added separately to each mixture. The resultant colorimetric response was analyzed using a UV-Vis spectrometer, and the absorbance at a wavelength of 465 nm was measured. The data was then compared with the calibration plot to determine the concentration of fluoride ions in the water samples. Similarly, the fluorescence detection was performed by monitoring the fluorescence intensity of the solution at 510 nm by exciting at 465 nm. For fluorescence measurement, 2.5 mL of 1.6×10^{-5} M solution of K₄PTC was placed in a cuvette, and 70 µL of a 1×10^{-3} M AlCl₃ solution in an aqueous medium was added. Then, 50 µL of each water sample was added separately to each mixture. The data was then compared with the calibration plot to determine the concentration of fluoride ions in the water samples. The results obtained corroborated the data from the fluoride ion-selective electrode.

Figure S17: Concentration of fluoride ion in the water sample as per the calibration curve obtained by following the methodology demonstrated in this work a) UV-Vis spectroscopy; b) Fluorescence spectroscopy.

No.of	Concentration	Concentration	Ion Selective	Error from	Error from
Samples	(UV-Vis	(FL	Electrode	UV-Vis	FL
	observation)	observation)		observation	observation
Sample 1	0.5 ppm	0.3 ppm		+0.22	+0.02
Sample 2	1.3 ppm	1.3ppm	AND	+0.1	+0.1
Sample 2	4.8 ppm	4.0 ppm		+0.7	+0.1
Sample 3	5.3 ppm	5.2 ppm	Therefore Therefore	-0.3	-0.4

Table S3: Comparison between the two spectroscopic methods of measuring the concentration of F⁻ ion in water sample with fluoride ion selective electrode method.

N	ïsible light (λ= 38	0 nm – 800 nm)		
				Sample 1
1	2	3	4	2
				3 4
	Under UV-lamp	(λ= 365 nm)		
1. K 4PTC 2. K 4P	TC +NaF	3. K ₄ PTC +Al ³⁺	4. K ₄ PTC +.	Al ³⁺ + NaF

RGB Values						
Sample	R	G	В			
1	162	163	95			
2	166	167	97			
3	177.7	158.7	128.7			
4	160.7	156.7	<i>109.7</i>			

Figure S18: Left: Visualization of the methodology in Paper strip, colorimetric and fluorescence changes of K_4PTC upon addition of aqueous solution of NaF and Al³⁺ under normal light and UV-Vis light, Right: RGB value of the colorimetric change.

SI	MOF	Fluori	Solvent	LOD	Reference
No		de	used		
•		Salt	for		
		useu	study		
1	Selective, Fast-Response, and Regenerable Metal–Organic Framework for Sampling Excess Fluoride Levels in Drinking Water	NaF	THF/W ater	0.1 ppm	Ebrahim, F. M.; Nguyen, T. N.; Shyshkanov, S.; Gładysiak, A.; Favre, P.; Zacharia, A.; Stylianou, K. C. Selective, fast- response, and regenerable metal– organic framework for sampling excess fluoride levels in drinking water. <i>Journal</i> <i>of the American</i> <i>Chemical Society</i> , 2019 , <i>141</i> (7), 3052- 3058
2	Highly Sensitive Optical Sensor for Selective Detection of Fluoride Level in Drinking Water: Methodology to Fabrication of Prototype Device	NaF	Ethanol /Water	0.1 ppm	Chatterjee, A.; Pan, N.; Maji, T. K.; Pasha, S. S.; Singh, S.; Ahmed, S. A.; Pal, S. K. Highly sensitive optical sensor for selective detection of fluoride level in drinking water: methodology to fabrication of prototype device. <i>ACS</i> <i>Sustainable Chemistry</i> & <i>Engineering</i> , 2021 , 9(20), 7160-7170.
3	Off/On Amino- Functionalized Polyhedral Oligomeric Silsesquioxane-Perylene Diimides Based Hydrophilic Luminescent	NaF	DMSO/ Water	16.2 ppb	Sun, M.; Liu, H.; Su, Y.; Yang, W.; Lv, Y. Off/on amino- functionalized polyhedral oligomeric silsesquioxane-

Table S4: Comparison with some of the reported methods

	Polymer for Aqueous				perylene diimides
	Fluoride Ion Detection				based hydrophilic luminescent polymer for aqueous fluoride ion detection. <i>Analytical</i> <i>chemistry</i> . 2020 , <i>92</i> (7).
					5294-5301.
4	Near-Infrared Fluoride Sensing Nano-Optodes and Distance-Based Hydrogels Containing Aluminum- Phthalocyanine	TBAF	THF (gel system at differen t pH)	0.1μΜ	Wang, L.; Zhang, Y.; Wang, L.; Cheng, Y.; Yuan, D., Zhai, J.; Xie, X. Near-Infrared Fluoride Sensing Nano- Optodes and Distance- Based Hydrogels Containing Aluminum- Phthalocyanine. <i>ACS</i> <i>sensors</i> , 2023 , <i>8</i> (11), 4384-4390.
5	Mixed lanthanide– organic frameworks with borono groups for colorimetric detection of excess fluoride levels in rivers	NaF	Suspen ded MOF solution in Water	0.16ppm at 544 nm and 0.84 ppm at 616 nm.	Cheng, P.; Min, H.; Zhu, Z.; Huang, M.; Zhou, J.; Zhao, N. Mixed lanthanide- organic frameworks with borono group for colorimetric detection of excess fluoride levels in river. <i>Inorganic</i> <i>Chemistry Frontiers</i> , 2024 .
6	Perylenemonoimide- Based Colorimetric Probe with High Contrast for Naked-Eye Detection of Fluoride Ions	TBAF	THF	0.495µM	Mu, M.; Ke, X.; Cheng, W.; Li, J.; Ji, C.; Yin, M. Perylenemonoimide- based colorimetric probe with high contrast for naked-eye detection of fluoride ions. <i>Analytical</i> <i>Chemistry</i> , 2022 , <i>94</i> (33), 11470- 11475.
7	Selective and Fast Detection of Fluoride- Contaminated Water Based on a Novel Salen-Co- MOF Chemosensor	TBAF	DMSO/ H ₂ O	0.24µM	Alhaddad, M.; El- Sheikh, S. M. Selective and fast detection of fluoride-contaminated water based on a novel Salen-Co-MOF

					Chemosensor. ACS
					omega, 2021 , 6(23),
					15182-
					15191.
8	This work: Perylene	NaF	Water	1 ppb	
	Tetracarboxylate Dye			(fluoromet	
	Based Colorimetric and			ric);	
	Fluorometric Sensor for			0.2 ppm	
	ppb-Level Fluoride			(colorimet	
	Detection in Water			ric)	